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Abstract Schultz (1992) formulated 2-person, zero-sum, discounted switching con-
trol stochastic games as a Linear Complementarity Problem (LCP) and discussed
computational results. It remained open to prove or disprove Lemke-processibility of
this LCP. We show that Lemke’s algorithm does not always sucessfully process this
LCP.

We propose two new LCP formulations with the aim of making the underlying
matrix belong to the classes R0 and E0 which would imply Lemke processibility.
While, formulating switching control games as an E0-matrix LCP leads to the vi-
olation of certain constraints, we prove that the underlying matrix in one of these
formulations is an R0-matrix.

Keywords Discounted Switching Control Stochastic Games, Linear Comple-
mentarity Problem (LCP), Processibility by Lemke’s Algorithm, Secondary Ray
Termination, E0 property (or the class E0), R0 property (or the class R0).

1 Introduction

The problem of computing the value and optimal strategies in various classes of
stochastic games has been well studied (Mohan et al (2001), Nowak and Ragha-
van (1993), Raghavan and Syed (1981), Parthasarathy et al (1984), Raghavan (2003),
Raghavan and Syed (2002), Sobel (1981)), and continues to draw significant interest.
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Solving some of these classes of stochastic games by formulating them as a lin-
ear complementarity problem (LCP) has been studied as well (Mohan et al (2001),
Raghavan and Syed (2002), Schultz (1992)).

Given a square matrix M of order n and a vector q of length n, the problem
LCP(q,M) is to find w≥0, z ≥0 such that w−Mz = q,w′z = 0. (w,z) is said to be a
solution of LCP(q,M) (if such a solution exists).

Lemke (1965) proposed a complementary pivot algorithm to solve LCPs. Lemke’s
algorithm either finds a solution (degenerate or otherwise) or terminates in a sec-
ondary ray, in which case the algorithm cannot proceed further. Significant research
has been done (for example, Garcia (1973)) to identify classes of matrices, such as
E0 ∩R0, for which Lemke’s algorithm finds a solution (and does not terminate in a
ray). We define these concepts in subsequent sections.

Schultz (1992) proposed an LCP formulation for discounted zero-sum switching
control stochastic games and discussed computational results, namely, that Lemke’s
algorithm found a solution for 100 randomly generated games. It remained open ei-
ther to prove that Schultz’s formulation is processible by Lemke’s algorithm or to
provide a counter example. We show that Lemke’s algorithm does not always sucess-
fully process this LCP, even when initialized as done in Schultz (1992). We suggest
alternative formulations, the underlying matrix in one of which is R0.

2 Background and Preliminaries

2.1 Stochastic Games (Shapley, 1953)

2.1.1 Zero-Sum Two-Player Stochastic Games

We define a zero-sum, 2-player, finite states space, finite action space stochastic game
as consisting of the following:

1. A finite set of states, S = {1,2, ...,N}.
2. A(s) = {1,2, ...,ms} and B(s) = {1,2, ...,ns}, finite sets of actions for players 1

and 2 respectively, for each state s ∈ S.
3. For each state s ∈ S, a matrix of immediate rewards to player 1 (from player 2),

R(s) = [r(s,a,b)].
4. Transition probabilities Qa,b(s, t) = [q(t|s,a,b)] where q(t|s,a,b) is the probabil-

ity of transition from state s to state t given that players 1 and 2 choose actions
a ∈ A(s), b ∈ B(s) respectively.

The game proceeds as follows. Given a starting state s0 ∈ S, the players choose ac-
tions a0 ∈ A(s0) and b0 ∈ B(s0) and player 2 pays r(s0,a0,b0) to player 1. The game
moves to a new state s1 according to Qa0,b0(s0,s) and the game continues infinitely.
Strategies as mentioned above, where each player picks an action at every state, are
called pure strategies. On the other hand, the players can also choose to play proba-
bility distributions over their respective action sets. Such strategies are called mixed
strategies. We shall only consider stationary strategies which are strategies that de-
pend only on the current state s and not on how s was reached.

Given strategies f ,g and an initial state s0, we define the β -discounted payoff
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[Iβ (f, g)](s0) =
∞

Σ
t=0

β t rt (s0, f, g) for a discount factor β∈[0, 1)

and the undiscounted (or limiting average) payoff

[φ (f, g)](s0) = liminf
T↑∞

1
T+1

T
Σ

t=0
rt (s0, f, g).

In this paper, we shall be looking at the case of discounted payoffs. In this case, a
pair of strategies (f*, g*) is optimal, if for all s ∈ S

[Iβ (f, g*)](s) ≤ [Iβ (f*, g*)](s) ≤ [Iβ (f*, g)](s),

for all pairs of strategies (f, g) of players 1 and 2.

2.1.2 Switching Control Stochastic Games

In a switching control stochastic game, player 1 controls the transitions in certain
states and player 2 in the other states. That is,

q(s′ | s,a,b) = q(s′ | s,a), for s′ ∈ S,s ∈ S1,a ∈ A(s) and ∀b ∈ B(s),

q(s′ | s,a,b) = q(s′ | s,b), for s′ ∈ S,s ∈ S2,b ∈ B(s) and ∀a ∈ A(s).

For the sake of completeness, we state the following theorem from Filar et al
(1991), restated in Schultz (1992).

Notation: In the following, 0k stands for the k-dimensional column vector of
0’s, 0k1×k2 stands for the matrix of all 0’s of order k1× k2 and ek stands for the k-
dimensional column vector of 1’s.

Theorem 2.1 : A β -discounted zero-sum stochastic game possesses value vβ (s) for
s ∈ S and optimal stationary strategies x and y for players 1 and 2 respectively if and
only if

x ∈ Xs,y ∈ Ys (2.1)

vβ (s)ems −β ∑
t∈S

Q(s, t)y(s)−R(s)y(s)≥ 0ms , ∀ s ∈ S, (2.2)

−vβ (s)ens +β ∑
t∈S

vβ (t)[x(s)
′
Q(s, t)]

′
+[x(s)

′
R(s)]

′ ≥ 0ns , ∀ s ∈ S. (2.3)

It follows that if vβ (s), x(s), y(s) satisfy (2.1), (2.2) and (2.3) then

vβ (s) = β ∑
t∈S

vβ (t)x(s)
′
Q(s, t)y(s)+ [x(s)

′
R(s)]y(s), ∀ s ∈ S. (2.4)

For β -discounted zero-sum switching control stochastic games, the above theo-
rem can be rewritten as follows.
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Theorem 2.2 : A β -discounted zero-sum switching control stochastic game pos-
sesses values vβ (s) for s ∈ S and optimal stationary strategies x(s) and y(s) if and
only if

x ∈ Xs,y ∈ Ys (2.5)

vβ (s)ems −β ∑
t∈S

vβ (t)q
1(s, t)−R(s)y(s)≥ 0ms , ∀ s ∈ S1, (2.6)

(vβ (s)−θβ (s))ems −R(s)y(s)≥ 0ms , ∀ s ∈ S2, (2.7)

(−vβ (s)+θβ (s))ens − (x(s)R(s))
′ ≥ 0ns , ∀ s ∈ S1, (2.8)

−vβ (s)ens +β ∑
t∈S

vβ (t)q
2(s, t)+ [x(s)

′
R(s)]

′ ≥ 0ns , ∀ s ∈ S2. (2.9)

x(s) is complementary in (2.5) and (2.6) (2.10)

y(s) is complementary in (2.8) and (2.9) (2.11)

where θβ (s) =


β ∑

t∈S
vβ (s)x(s)

′
q1(s, t), for s ∈ S1

β ∑
t∈S

vβ (s)q
2(s, t)

′
y(s), for s ∈ S2

2.2 Processibility of LCPs by Lemke’s algorithm

We use the implementation of Lemke’s algorithm as discussed by Murty (1997).

The Class E0: M ∈ E0 , if ∀0 6= z≥ 0,∃i such that zi > 0 and (Mz)i ≥ 0.

The Class R0: M ∈ R0 , if LCP(0,M) has a unique solution, viz., (0,0).

Theorem 2.3 : (Sufficient condition for Lemke processibility): LCP(q,M) is proces-
sible by Lemke’s algorithm if M is both E0 and R0.

Apart from the book by Murty (1997), the reader is also encouraged to refer to
the paper by Cottle and Dantzig (1968) and the book by Cottle et al (1992) for an
excellent treatment of the Linear Complementarity Problem, and to (Mohan et al,
1996) for proofs of equivalence of the LCP and the General LCP.

3 On Lemke-Processibility of Schultz’s LCP Formulation

3.1 Schultz’s Formulation

For the sake of completeness, we describe Schultz’s formulation ((Schultz, 1992))
below. Using theorem 2.2, Schultz (1992) formulated 2-player, Zero-Sum, Switching
Control Stochastic Games as the following Linear Complementarity Problem:

w−Mz = q = −c where M =

[
R B
A 0

]
is a K×K matrix, K = 4N + (m + n), m =

∑s∈S ms, n = ∑s∈S ns.
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z′ =
[

x′ y′
]

where x =


v1
v2
θ1
θ2

 ,y =


f (1)
...

f (N)
g(1)

...
g(N)


,

v and θ are unbounded variables and are written as the difference of non-negative
variables as follows: v(s) = v1(s)− v2(s),θ(s) = θ1(s)−θ2(s)
B and R are defined so that Bx+Ry ≥ 0 is equivalent to (2.6) through (2.9). A is
defined to make f and g probability vectors.

3.2 Examples where Lemke’s Algorithm Terminates in a Secondary Ray

Schultz (1992) discusses formulation, initialization and processing of the following
switching control stochastic game. In this game, N = 2,m1 = m2 = n1 = n2 = 2 and
following are the rewards and transitions:

R(1) =
[

1 4
2 3

]
,q1(1,1) =

[
0.5
0

]
,q1(1,2) =

[
0.5
1

]

R(2) =
[

1 4
5 1

]
,q2(2,1) =

[
0.5
1

]
,q2(2,2) =

[
0.5
0

]
Discount factor β = 0.8.

3.2.1 Paths in the example in Schultz (1992) that lead to a secondary ray

Starting with the initial tableau as given below, we find that, even if we initialize d
= c as suggested in Schultz (1992), there are paths that lead to a secondary ray and
hence, Lemke’s algorithm cannot proceed further.

z w z0 q

w
0 −A
−B −R I -d -c

In our program, we used the lexicographic method to choose the row correspond-
ing to the minimum ratio and as described in Murty (1997), this technique ensures a
unique row in each iteration. We also experimented with other methods such as “al-
ways choosing the first minimum row”, “always choosing the last minimum row” and
so on and in all our experiments, the algorithm reached a secondary ray. Of course,
there are “good paths” too - paths that lead to a solution (degenerate or otherwise).
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3.2.2 1-state example

We consider the following example where there is just 1 state (say, controlled by
player 1), each player has just 1 action and (obviously), the state is an absorbing
state. The reward to player 1 is 1 (say). Here, again, one of the paths in Lemke’s
algorithm leads to a secondary ray.

The matrices are as follows:

A =


−1 1
1 −1
0 1
0 −1



B =

[
0.2 −0.2 0 0
−1 1 1 −1

]

R =

[
0 −1
1 0

]

We list the tables and discuss further details in appendix 1.

For both the above examples, we experimented with different initializations of d,
for example d = q=−c,d =−q= c,d = e, the vector of all 1’s, and d with each entry
unique, and for all these cases, Lemke’s algorithm terminates in a secondary ray. As
discussed by Kostreva (refer the book by (Murty, 1997)), successful termination of
Lemke’s algorithm heavily depends on the choice of d. Murty (1997) discusses some
examples where Lemke’s algorithm finds a solution for some choice of d and ends
up in a secondary ray for a different choice of d. In appendix 1, we discuss a choice
of d for the 1-state example, for which Lemke’s algorithm always finds a solution.

4 New Formulations

In Schultz’s formulation (Schultz (1992)), we rearrange the variables (and hence,
corresponding rows and columns) for the sake of convenience. Without loss of gen-
erality, we assume that the first N1 states, viz., {1, 2, ..., N1} are controlled by player
1 and the rest of the states, viz., {N1 +1,..., N} are controlled by player 2. Let N2= N
- N1.

The LCP is w−Mz = q =−c where M =

[
R B
A 0

]
is a K×K matrix, K = 4N + (m

+ n), m = ∑s∈S ms, n = ∑s∈S ns and the submatrices are defined as follows:
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R =



−R(1) 0m1×n2 . . . 0m1×nN

0m×n 0m2×n1 −R(1) . . . 0m2×nN
...

...
...

0mN×n1 0mN×n2 . . . −R(N)

R′(1) 0n1×m2 . . . 0n1×mN

0n2×m1 R′(2) . . . 0n2×mN 0n×m
...

...
...

0nN×m1 0nN×m2 . . . R′(N)



B =
[
(B1−B2) (B2−B1) B3 −B3

]
where

B1 =



em1 0m1 0m1 . . . 0m1 0m1 . . . 0m1

0m1 em2 0m2 . . . 0m2 0m2 . . . 0m2
...

...
...

...
...

...
0mN1

0mN1
0mN1

. . . emN1
0mN1

. . . 0mN1

0mP2
0mP2

0mP2
. . . 0mP2

0mP2
. . . 0mP2

0nP1
0nP1

0nP1
. . . 0nP1

0nP1
. . . 0nP1

0nN1+1 0nN1+1 0nN1+1 . . . 0nN1+1 −enN1+1 . . . 0nN1+1
...

...
...

...
...

...
0nN 0nN 0nN . . . 0nN 0nN . . . −enN



where mP2 is the number of actions for player 1 in player 2 controlled states. That
is, mP2 = ∑s2∈S2

ms2 . Similarly, nP1 is the number of actions for player 2 in player 1
controlled states. That is, nP1 = ∑s1∈S1

ns1 .
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B2 =



βq1(1,1) . . . βq1(1,N1) βq1(1,N1 +1) . . . βq1(1,N)

βq1(2,1) . . . βq1(2,N1) βq1(2,N1 +1) . . . βq1(2,N)
...

...
...

...
βq1(N1,1) . . . βq1(N1,N1) βq1(N1,N1 +1) . . . βq1(N1,N)

0mN1+1 . . . 0mN1+1 −emN1+1 . . . 0mN1+1
...

...
...

...
0mN . . . 0mN 0mN . . . −emN

en1 . . . 0n1 0n1 . . . 0n1
...

...
...

...
0nN1

. . . enN1
0nN1

. . . 0nN1

−βq2(N1 +1,1) . . . −βq2(N1 +1,N1) −βq2(N1 +1,N1 +1) . . . −βq2(N1 +1,N)
...

...
...

...
−βq2(N,1) . . . −βq2(N,N1) −βq2(N,N1 +1) . . . −βq2(N,N)



B3 =



0m . . . 0m 0m . . . 0m

0mN1+1 . . . 0mN1+1 −emN1+1 . . . 0mN1+1
...

...
...

...
0mN . . . 0mN 0mN . . . −emN

en1 . . . 0n1 0n1 . . . 0n1
...

...
...

...
0nN1

. . . enN1
0nN1

. . . 0nN1

0n . . . 0n 0n . . . 0n


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A =



−e′m1
. . . 0′mN1

0′mN1+1
. . . 0′mN

e′n1
. . . 0′nN1

0′nN1+1
. . . 0′nN

e′m1
. . . 0′mN1

0′mN1+1
. . . 0′mN

−e′n1
. . . 0′nN1

0′nN1+1
. . . 0′nN

...
...

...
...

...
...

...
...

0′m1
. . . 0′mN1

0′mN1+1
. . . −e′mN

0′n1
. . . 0′nN1

0′nN1+1
. . . e′nN

0′m1
. . . 0′mN1

0′mN1+1
. . . e′mN

0′n1
. . . 0′nN1

0′nN1+1
. . . −e′nN

0′m1
. . . 0′mN1

−e′mN1+1
. . . 0′mN

0′n1
. . . 0′nN1

0′nN1+1
. . . 0′nN

0′m1
. . . 0′mN1

e′mN1+1
. . . 0′mN

0′n1
. . . 0′nN1

0′nN1+1
. . . 0′nN

...
...

...
...

...
...

...
...

0′m1
. . . 0′mN1

0′mN1+1
. . . −e′mN

0′n1
. . . 0′nN1

0′nN1+1
. . . 0′nN

0′m1
. . . 0′mN1

0′mN1+1
. . . e′mN

0′n1
. . . 0′nN1

0′nN1+1
. . . 0′nN

0′m1
. . . 0′mN1

0′mN1+1
. . . 0′mN

e′n1
. . . 0′nN1

0′nN1+1
. . . 0′nN

0′m1
. . . 0′mN1

0′mN1+1
. . . 0′mN

−e′n1
. . . 0′nN1

0′nN1+1
. . . 0′nN

...
...

...
...

...
...

...
...

0′m1
. . . 0′mN1

0′mN1+1
. . . 0′mN

0′n1
. . . e′nN1

0′nN1+1
. . . 0′nN

0′m1
. . . 0′mN1

0′mN1+1
. . . 0′mN

0′n1
. . . −e′nN1

0′nN1+1
. . . 0′nN



c =


02N+m+n

−e∗2N2

e∗2N1


where e∗2k is the 2k-dimensional column vector of alternating 1’s and −1’s, start-
ing with 1.

The following theorem can be easily verified.

Theorem 4.4 : The matrix M in the above formulation is neither E0 nor R0.

Owing to theorem 2.3 above, we start with the aim of coming up with a formula-
tion that is processible by Lemke’s algorithm. But we find that if we artificially try to
make the matrix R0, the E0 property breaks down and vice versa.
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4.1 LCP formulation where we try to achieve the E0-property:

Among different formulations we tried, following is closest to E0. This is still not
E0 as can be checked. Artificially trying to impose constraints seems to lead to the
breakdown of some condition or the other. Following are the changes we make to the
formulation by Schultz (1992).

Here,

M1 =

[
R1 B1

A1 0

]
is a K1×K1 matrix where K1 = 3N +(m+n).

R1 = R as in Schultz’s formulation; A1 and B1 are as follows:

A1 =



e′m1
. . . 0′mN

0′n1
. . . 0′nN

...
...

...
...

0′m1
. . . 0′mN

0′n1
. . . e′nN

0′m1
. . . 0′mN

−e′n1
. . . 0′nN

...
...

...
...

0′m1
. . . 0′mN

0′n1
. . . −e′nN


B1 =

[
B1 B3 B4

]
where B1,B3 and B4 are as described in section 3.1 above.

c1 =


0m+n

−e2N

eN



4.2 LCP formulation where the underlying matrix is R0:

We make the following changes to the formulation by Schultz so that M2 satisfies the
R0 property.

M2 =

[
R2 B2

A2 D2

]
is a K1×K1 matrix where K1 = K +1 = 4N +(m+n)+1.

Here too, R2 = R as in Schultz’s formulation, A2,B2 and D2 are as follows:

A2 =

[
A

0m+n

]
where A is as in Schultz’s formulation.
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B2 =
[

B 0m+n
]

where B is as in Schultz’s formulation.

D2 =

04N×4N+1

−e′4N+1



c2 =

 c

U


where c is as described in section 3.1 and U is a large constant.

Notice that we have, in effect, added an additional row and an additional column
to the original formulation. This translates to placing a (large) upper bound on the
values. The following theorem can be easily checked.

Theorem 4.5 : M2 ∈ R0.

5 Conclusion and Future Work

We have provided examples where Lemke’s algorithm applied to the LCP formula-
tion as proposed by Schultz (1992) leads to a secondary ray. We propose two new
formulations, the underlying matrix in one of which is R0. It remains open to find
an LCP formulation of 2-player, zero-sum, discounted switching control stochastic
games that can be processed by Lemke’s algorithm. Alternatively, we may formulate
the problem as a General (Vertical) LCP and use techniques from (Mohan et al, 1996)
to solve them.

Another interesting open problem is to find a suitable d such that our formula-
tions LCP (q, M) find a solution. In fact, this problem is open, in general, for solving
LCPs. This problem is of special interest in our case because of the special structure
of q because of which we may, in fact, be able to find a suitable d.
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Appendix 1

For the 1-state example discussed in section 3.2.2, the initial tableau is

z1 z2 z3 z4 z5 z6 w1 w2 w3 w4 w5 w6 z0 q q/d
w1 0 1 -0.2 0.2 0 0 1 0 0 0 0 0 0 0 -
w2 -1 0 1 -1 -1 1 0 1 0 0 0 0 0 0 -
w3 1 -1 0 0 0 0 0 0 1 0 0 0 0 0 -
w4 -1 1 0 0 0 0 0 0 0 1 0 0 0 0 -
w5 0 -1 0 0 0 0 0 0 0 0 1 0 -1 -1 -1
w6 0 1 0 0 0 0 0 0 0 0 0 1 1 1 -1
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Clearly, there is a tie between w5 and w6 as both correspond to the minimum
ratio. Feasibility is maintained irrespective of which of these variables is chosen to
leave the basis. If we choose w5, then we get the following tableau.

z1 z2 z3 z4 z5 z6 w1 w2 w3 w4 w5 w6 z0 q q/z5
w1 0 1 -0.2 0.2 0 0 1 0 0 0 0 0 0 0 -
w2 -1 0 1 -1 -1 1 0 1 0 0 0 0 0 0 -
w3 1 -1 0 0 0 0 0 0 1 0 0 0 0 0 -
w4 -1 1 0 0 0 0 0 0 0 1 0 0 0 0 -
z0 0 1 0 0 0 0 0 0 0 0 -1 0 1 1 -
w6 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -

As w5 has left the basis, the entering variable is z5. But as none of the entries
in the column corresponding to z5 are positive, we have reached a secondary ray
and Lemke’s algorithm cannot proceed further. Note that this game is also a one-
player control game and Lemke’s algorithm is not guaranteed to terminate for this
formulation even for the one-player control case.

For this example, it is easy to choose d so as to force w6 to correspond to the row
with minimum ratio in the first iteration. For example, choose d =

[
0 0 0 0 2 −1

]′.
On choosing w6 as the leaving variable, it is easy to verify that all paths lead to a
solution.
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