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Abstract. In a multinomial set-up with k possible outcomes, we develop estimation under a “middle

censoring” paradigm, which is as per Jammalamadaka and Mangalam (2003). This problem has many

special features because of the inter-dependent probabilities, which we explore here.

1 Introduction

In this paper we discuss a “middle-censoring” scheme when the data comes from a multinomial experiment.

Middle censoring occurs if the actual value of a data point is not observed but is known to fall inside a

specific interval. In particular for our multinomial setup, some individuals choose exactly one of the k

possible categories whereas some others, choose intervals covering several categories. Well known censoring

schemes such as right- and left- censoring can be seen as special cases of such a middle censoring by picking

suitable censoring intervals.

Considerable ground has been covered with regards to middle censoring problems over the last decade

and a half. One may refer to Jammalamadaka and Mangalam (2003) where the authors develop self-consistent

and non-parametric maximum likelihood estimators (MLEs) for the unknown Cumulative Distribution Func-

tion (CDF) for such middle censored data. Jammalamadaka and Iyer (2004) establish approximate self

consistency for middle censored data. Iyer et al. (2008) considered a parametric middle censoring scheme

using exponential lifetime data. Davarzani and Parsian (2011) discussed middle censoring in a discrete setup

by taking observations from a geometric distribution. More recent references include Jammalamadaka and

Leong (2015) where the authors discuss a middle censoring scheme for geometric random variables in the

presence of covariates, and Ahmadi et al. (2017) who consider middle censoring in the context of competing

risks.

An outline of the paper is as follows. In Section 2 we develop the likelihood function for middle censored

data from a multinomial model, in the most general setup. However, because of the complicated dependencies

between the multinomial probabilities as well as the observed frequencies, explicit expressions for the MLEs

for individual probabilities and their large-sample variances in such a general setup are not easy to get, and

may have to be obtained numerically. To illustrate these ideas, we consider three different scenarios covering

the middle censoring scheme—one where there is just one interval allowed, a second one where there are 2 non-

overlapping intervals, and the third case that allows 2 intervals that overlap. Section 3 develops a Bayesian

framework for estimating the required probabilities. The final Section 4 contains bootstrap estimates and

variances of the unknown probability vector. This section also provides a simulation analysis comparing the
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Bayes estimates, and the estimates one gets from the different methods proposed here. We also present an

example using real data, in the form of ratings given by a group of students for their experience in using a

particular software for remote lectures.

1.1 The Problem

Consumers are constantly asked to rate products that they buy on a website like Amazon. Or in market

research, a company which plans to launch a new product, wants to gauge the user response in terms of

the preference-ratings or the “star-ratings” the product gets, as part of a pilot study. Assume that the

company contacts n individuals, each of them being asked to rate the product in terms of {1, 2, ..., k} stars,

according to his/her liking for the product. Let fj stand for the number/frequency of people giving j stars.

If we denote the true probabilities of giving 1, 2, ..., k stars by p1, p2, ..., pk respectively, we have the standard

multinomial scheme with
∑k
j=1 fj = n and

∑k
j=1 pj = 1, which is a classical and well-studied problem.

Alternatively, assume that out of these n individuals some of them hedge their bets, and assign an “interval

rating” for the item. To get started and to illustrate things, let us say e.g. a given number f12 of people

are undecided between the ratings 1 and 2, and say their rating falls in the interval [1, 2] comprising both

the ratings between 1 and 2. This refers to either 1 or 2 stars but s/he is not convinced over one particular

rating between these two. This is what we shall refer to as an “interval rating” from now on. Given this

new additional category, say with probability p12, we now have p12 +
∑k
j=1 pj = 1 and the total frequency

f12 +
∑k
j=1 fj = n. We are interested in determining how the estimated probabilities for each individual

category would change if the scheme also allows such interval ratings. In other words, we wish to figure out

the estimated probabilities, p̂1, p̂2, ..., p̂k under this new scheme.

1.2 The Likelihood under a General Scheme

Developing the maximum likelihood estimates along with their properties such as asymptotic variances under

the standard multinomial setup, has been considered extensively in the literature. One may, for instance,

refer to Alam (1979) or Kunte and Upadhya (1996) where the authors have discussed both the MLEs and

UMVUEs under the classical multinomial setup.

First we consider the likelihood function under our general multinomial scheme which allows interval

ratings, for which we introduce some notations. Let I represent an interval (say e.g. j1 to j2) of cate-

gories/scores with corresponding probability PI =
∑
j∈I pj for this interval. When such interval scores are

allowed, out of the n individuals, let us say m (≤ n) of them provide interval-ratings that belong to the

intervals {Ij ; j = 1, 2, ...,m} with r of these intervals being distinct. The remaining (n − m) individuals

provide specific single ratings, of which let us say there are k. Then the probabilities satisfy

(1.1)

r∑
j=1

PIj +

k∑
i=1

pi = 1.

Further assume that the frequency in the interval Ij is Fj and the frequency in the k individual categories
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are fi. Then
∑r
j=1 Fj = m and

∑k
i=1 fi = n−m, so that

(1.2)

r∑
j=1

Fj +

k∑
i=1

fi = n.

Then the likelihood for the vector p given m,n−m, {fi}, and {Fj} is given by:

(1.3) L ∝
r∏
j=1

P
Fj

Ij
×

k∏
i=1

pfii

subject to the conditions (1.1) and (1.2) with the corresponding Log-likelihood

(1.4) logL = constt.+

r∑
j=1

Fj .logPIj +

k∑
i=1

fi.logpi.

This likelihood in Eqn. (1.3) is comparable to Eqn. (4) in Iyer et al. (2008) or Eqn. (1) in Jammala-

madaka and Leong (2015), except for the additional restrictions imposed by the conditions (1.1) and (1.2)

due to the dependence among the categories, and their frequencies. Estimation for individual p′is which is

our main goal, becomes even more cumbersome when some of the intervals overlap. In such cases, analytical

solutions may not be possible, but one can obtain estimates through numerical methods.

To illustrate these ideas, we develop three successively more complex scenarios— labelled Cases 1, 2, and

3, and show how they can be handled. The following sections introduce corresponding likelihood functions

for these three cases, provide estimators for p ≡ (p1, p2, ..., pk) and discuss their asymptotic variances, in

each of these cases.

2 Maximum Likelihood Estimators in Some Special Cases

We now propose three interesting scenarios with increasing levels of complexity and provide appropriate

MLEs for the probability vector p. First, in “Case 1”, we start by assuming that the individuals are allowed

just one pre-specified interval rating besides the singleton ratings. Similarly “Case2” assumes that two such

“non-overlapping” interval ratings are allowed besides the singleton ratings, whereas “Case 3” assumes that

two such “overlapping” interval ratings are possible. More general scenarios are possible, and follow similar

ideas.

2.1 Case 1

Assume that we only have a single “interval rating” namely [i, j], with fij number of individuals opting for

that. Clearly the probability of any individual giving that rating is pij = pi + pi+1 + ...+ pj . Given that this

is an additional category that is being allowed in the multinomial scheme, we further have

(2.1) pij +

k∑
i=1

pi = p1 + ...pi−1 + 2(pi + pi+1 + ...+ pj) + ...+ pk−1 + pk = 1.
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The likelihood function is then proportional to

(2.2) pf11 . . . pfii . . . p
fj
j . . . pfkk p

fij
ij ,

where 1 ≤ i < j ≤ k, with the log-likelihood

(2.3) logL = f1 log p1 + ...+ fk log pk + fij log pij ,

where pk = (1− p1 − ...− 2pi − 2pi+1 − ...− 2pj − ...− pk−1). To obtain the MLEs, one needs to solve the

following simultaneous equations,

f1
p1

+
−fk
pk

= 0, ...,
fi−1
pi−1

+
−fk
pk

= 0,
fj+1

pj+1
+
−fk
pk

= 0, ...,
fk−1
pk−1

+
−fk
pk

= 0

and,

fi
pi

+
−2fk
pk

+
fij
pij

= 0, ...,
fj
pj

+
−2fk
pk

+
fij
pij

= 0

which lead to the following MLEs,

(2.4) p̂1 =
f1
n
, ..., p̂i−1 =

fi−1
n

, p̂j+1 =
fj+1

n
, ..., p̂k =

fk
n

and,

(2.5) p̂l =
fl
2n

(
fi + fi+1 + ...+ fj + fij
fi + fi+1 + ...+ fj

)
=

fl
2n

(
1 +

fij
fi + fi+1 + ...+ fj

)
,

where l = i, (i+ 1), ..., j.

Remark 1. Now if fij = 0, i.e. no one opts for the interval rating even after being given that choice, the

MLEs for the pl in this interval will suffer because of that and reduce to become p̂l = fl/2n. This is justified

in view of Equation (2.1).

Remark 2. If all the individual frequencies in the interval [i, j] are zero except for one category, say just

the fi 6= 0, then

p̂i =
fi
2n

(
fi + fij
fi

)
=
fi + fij

2n
,

i.e the ith category gets all the added benefit of this interval frequency fij . This is in agreement with the

Proposition 1 of Jammalamadaka and Mangalam (2003).
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2.2 Case 2

Now assume that we allow for two disjoint “interval ratings” namely, [i1, j1] and [i2, j2] with corresponding

observed frequencies fi1j1 and fi2j2 and respective probabilities pi1j1 , pi2j2 . The forms of pi1j1 and pi2j2 are

similar to those given in Section (2.1). We further have, pi1j1 + pi2j2 +
∑k
i=1 pi = 1. The likelihood function

will then be,

(2.6) pf11 . . . p
fi1
i1

. . . p
fj1
j1

. . . p
fi2
i2

. . . p
fj2
j2

. . . pfkk p
fi1j1
i1j1

p
fi2j2
i2j2

,

where 1 ≤ i1 < j1 < i2 < j2 ≤ k. The log-likelihood function is clearly,

(2.7) logL = f1 log p1 + ...+ fk log pk + fi1j1 log pi1j1 + fi2j2 log pi2j2

where pk = (1− p1 − ...− 2pi1 − ...− 2pj1 − pj1+1 − ...− 2pi2 − ...− 2pj2 − ...− pk−1). To obtain the MLEs,

one needs to solve the following simultaneous equations,

f1
p1

+
−fk
pk

= 0, ...,
fi1−1
pi1−1

+
−fk
pk

= 0,
fj1+1

pj1+1
+
−fk
pk

= 0, ...,
fi2−1
pi2−1

+
−fk
pk

= 0,
fj2+1

pj2+1
+
−fk
pk

= 0, ...,

fk−1
pk−1

+
−fk
pk

= 0

and,

fi1
pi1

+
−2fk
pk

+
fi1j1
pi1j1

= 0, ...,
fj1
pj1

+
−2fk
pk

+
fi1j1
pi1j1

= 0,
fi2
pi2

+
−2fk
pk

+
fi2j2
pi2j2

= 0, ...,
fj2
pj2

+
−2fk
pk

+
fi2j2
pi2j2

= 0

which lead to the following MLEs,

(2.8) p̂1 =
f1
n
, ..., p̂i1−1 =

fi1−1
n

, p̂j1+1 =
fj1+1

n
, ..., p̂i2−1 =

fi2−1
n

, p̂j2+1 =
fj2+1

n
, ..., p̂k =

fk
n

and,

(2.9) p̂l1 =
fl1
2n

(
1 +

fi1j1
fi1 + ...+ fj1

)
, p̂l2 =

fl2
2n

(
1 +

fi2j2
fi2 + ...+ fj2

)
where l1 = i1, (i1 + 1), ..., j1 and l2 = i2, (i2 + 1), ..., j2.

Again, if fi1j1 = fi2j2 = 0 i.e. no individual opts for either of these interval ratings even after being

given the option, then the MLEs will become p̂l1 = fl1/2n and p̂l2 = fl2/2n, where l1, l2 belong to intervals

given above.

Asymptotic Variances of the Estimates

Next we consider the large-sample variances of the estimates given in Eqns. (2.4), (2.5) for Case 1,

and Eqns. (2.8) and (2.9) for Case 2. Since these estimates are all MLEs, the asymptotic standard errors

of p̂i can be computed using the corresponding information matrix. For a vector of N parameters, say
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θ = [θ1, θ2, ..., θN ] in the model, a typical ijth element in the Fisher information matrix is given by,

[I(θ)]ij = EXθ

[(
∂

∂θi
logL(X; θ)

)(
∂

∂θj
logL(X; θ)

)]
.

Then one can obtain the large-sample variances as V (θ̂i) = [I−1(θ)]ii, i = 1, . . . , N. Deriving these asymptotic

variances for a general scheme is not straightforward and we provide derivations for some special cases in

Appendices A.1 and A.2 (found in the supplement) corresponding to Cases 1 and 2 respectively.

2.3 Case 3

For some i1 < i2 < j1 < j2, if we now allow for two overlapping “interval ratings” say, [i1, j1] and [i2, j2],

with an overlap of [i2, j1], the likelihood function can be written similar to Eqn. (2.9) and is given by:

(2.10) pf11 . . . p
fi1
i1

. . . p
fj1
j1

. . . p
fi2
i2

. . . p
fj2
j2

. . . pfkk p
fi1j1
i1j1

p
fi2j2
i2j2

,

where 1 ≤ i1 < i2 ≤ j1 < j2 ≤ k. The log-likelihood function is clearly,

(2.11) f1 log p1 + ...+ fk log pk + fi1j1 log pi1j1 + fi2j2 log pi2j2

where
∑k
i=1 pi + pi1j1 + pi2j2 = 1. However because of this overlap, finding even the MLEs, leave alone their

asymptotic variances, becomes very cumbersome and easy analytical solutions do not exist. However they

can be obtained numerically, as we demonstrate in Section 4.

3 Bayes Estimation under Dirichlet Priors

Bayes estimation in a multinomial setup has been discussed by several authors– see e.g. Lehmann and

Casella (1998) or Ferrie and Blume-Kohout (2016).

In this section we will adopt a Bayesian framework to estimate the unknown probability vector. Now

using notations from Section (1.2), the unknown probability vector is p ≡ (PI1 , PI2 , ..., PIr , p1, p2, ..., pk)

We will now assume a prior distribution for p. A natural choice would be the conjugate prior, namely

the Dirichlet distribution. The setup is as follows: Let X = (X1, X2, ..., Xn) denote the choices of the n

individuals with each Xi taking either an interval or a specific score. Hence we can assume,

X|p ∼Multinomial(p)

p|α ∼ π(p) ≡ Dir(α),

where Dir(α) stands for a Dirichlet distribution with parameter vector α = (α∗1, ..., α
∗
r , α1, α2, ..., αk), where

α∗i (> 0) corresponds to the respective prior parameter on each PIj , j = 1, 2, ..., r. The Dirichlet density is
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then given as:

(3.1) Dir(p|α) =
Γ(
∑r
j=1 α

∗
j +

∑k
i=1 αi)∏r

j=1 Γ(α∗j )
∏k
i=1 Γ(αi)

r∏
j=1

P
α∗

j−1
Ij

×
k∏
i=1

pαi−1
i .

Now the likelihood function (L(data|p)) is exactly similar to Eqn. (1.1). Hence the posterior density is given

by:

(3.2) π(p|data) =
L(data|p)π(p)∫

p
L(data|p)π(p)dp

The numerator of (3.2) can be written as,

(3.3) L(data|p)π(p) ∝
r∏
j=1

P
Fj+α

∗
j−1

Ij
×

k∏
i=1

pfi+αi−1
i ,

from which the posterior density can be easily written down.

We now illustrate the ideas in a simple special case namely when k = 5 and p = (p1, p2, p3, p4, p5, p12),

where there exists a single “interval rating” viz. [1, 2] with a frequency of f12(> 0) and having a probability

of p12 = p1 + p2. Also hence, p12 +
∑5
i=1 pi = 1. We will now build upon the likelihood function along

with the appropriate posterior distribution for p. Now as in previous sections, the likelihood function can

be written as,

(3.4) L(data|p) =

5∏
i=1

pfii (p1 + p2)f12 .

Further, similar to (3.3),

(3.5) L(data|p)π(p) = (p1 + p2)f
∗

5∏
i=1

pfi+αi−1
i ,

where f∗ = f12 + α∗1 − 1, which is > 0 since we assume f12 ≥ 1 and α∗1 > 0. The expression in (3.5) can be

thought of as a Dirichlet distribution with a different set of parameters. Further,

∫
p

L(data|p)π(p)dp =
Γ(f∗ + 1)

∏5
i=1 Γ(fi + αi)

Γ(n+
∑5
i=1 αi + α∗1)

= c∗(say).(3.6)

Combining (3.5) and (3.6) we have the posterior density, from which one can obtain the Bayes estimate of

p. Under Squared Error Loss, it is given by the mean of this posterior. In particular, the Bayes estimator

of pi is given by

p̂i(Bayes) =

∫
p
pi
∏5
j=1 p

fj+αj−1
j (p1 + p2)f

∗
dp

c∗
=

Γ(f∗ + 1)Γ(fi + αi + 1)
∏5
j=2 Γ(αj + fj)

Γ(n+
∑5
j=1 αj + α∗1 + 1)c∗
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(3.7) =
fi + αi

n+
∑5
j=1 αj + α∗1

, i = 1, 2, 3, 4, 5

Further,

p̂12(Bayes) =

∫
p
(p1 + p2)

∏5
j=1 p

fj+αj−1
j (p1 + p2)f

∗
dp

c∗
=

Γ(f∗ + 2)
∏5
j=1 Γ(αj + fj)

Γ(n+
∑5
j=1 αj + α∗1 + 1)c∗

(3.8) =
f12 + α∗1

n+
∑5
j=1 αj + α∗1

4 Parametric Bootstrapping and Real Data Analysis for the Es-

timates and Variances

As an alternative to finding the MLEs and their asymptotic variances, which as we can see, gets complicated

pretty quickly, one might adopt a parametric bootstrap to get the estimates and the variances of the estimates

for the 3 cases discussed in Sections 2.1, 2.2 and 2.3. These are obtained by first using the relative frequencies

as the initial probabilities, and bootstrapping/simulating a large number of independent samples. As an

illustration and demonstration that they provide similar results, we first present results for such bootstrapping

for “Case-1”, alongside the results for our Bayesian setup. Results for “Case-2” and “Case-3” can be derived

similarly (see Remark at the end of Section 4.1).

4.1 Illustrative Results for Case 1

We will consider the case as given in Section 2.1, where we allow a single “interval rating”. Now let i = 1, j = 2

and k = 5. The likelihood and log-likelihood functions are as given in (2.2), (2.3) and in particular take the

following forms:

L = pf11 p
f2
2 p

f3
3 p

f4
4 p

f5
5 (p1 + p2)f12 ,

and,

logL = f1 log p1 + f2 log p2 + f3 log p3 + f4 log p4 + f5 log p5 + f12 log(p1 + p2),

where p5 = (1− 2p1− 2p2− p3− p4) and f12 denotes the only “interval rating”. Now we first fix an observed

vector of frequencies and assume it to come from a multinomial distribution with parameter vector p, where

p = [p1, p2, p3, p4, p5, p12]. We intentionally fix f12 to be higher than both f1 and f2, since it is reasonable

to assume that in any practical scenario when given an option, more people will likely opt for an interval

rating instead of giving a single number. We then calculate the estimated probabilities using (2.4) and (2.5),

which take the following forms,

p̂1 =
f1
2n

(
1 +

f12
f1 + f2

)
, p̂2 =

f2
2n

(
1 +

f12
f1 + f2

)
, p̂i =

fi
n
,
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for i = 3, 4, 5. Now assuming these estimates are the actual probabilities (p̂ ≡ p), we bootstrap a large

number of samples (say R = 103) from a Mult(p) distribution, and recalculate the probability estimates

using (2.4) and (2.5). We then observe the pattern of the estimates by looking at the mean and standard

errors of these estimates over the R bootstraps. Let these be denoted by p̂R and s(p̂R) respectively. The

asymptotic variances of p̂ take the following forms:

V (p̂1) =
p1[p1(1− 2p1)− 2p1p2 + 2p2]

2n(p1 + p2)
; V (p̂2) =

p2[p2(1− 2p2)− 2p1p2 + 2p1]

2n(p1 + p2)
;

V (p̂12) =
1

2n
(p1 + p2)(p3 + p4 + p5); V (p̂i) =

pi(1− pi)
n

, i = 3, 4, 5.

The above expressions for the asymptotic variances are derived in Appendix A.1 (found in the supplement).

We also provide the Bayes estimates, using Dirichlet priors for the given data sets. Tables 1 and 2

outline the results for two different values of n, for a given set of observed frequencies. For our Bayesian

setup, as our first instance we fix α = (2, 3, 1, 2, 4, 4), whereas as a second instance we fix α = (4, 6, 1, 1, 2, 4).

Now if one compares values of p̂Ri and fi/n across all values of i, the interval rating [1, 2] puts an additional

mass on both p̂R1 and p̂R2 while all others stay comparable. Intuitively, the jumps from f1/n to p̂R1 and f2/n

to p̂R2 are proportional to f1 and f2.

Table 1: Illustrative results for Case 1 with n = 100

i 1 2 3 4 5 [1, 2]
fi 15 5 15 10 25 30
fi/n 0.15 0.05 0.15 0.10 0.25 0.30
p̂MLE
i

(s(p̂MLE
i ))

0.1875
(.0286)

0.0625
(0.0225)

0.1500
(0.0357)

0.1000
(0.0300)

0.2500
(0.0433)

0.2500
(0.0250)

p̂Ri
(s(p̂Ri ))

0.1873
(0.0281)

0.0623
(0.0220)

0.1493
(0.0346)

0.1016
(0.0299)

0.2495
(0.0430)

0.2497
(0.0242)

p̂i(Bayes) 0.1451 0.0691 0.1393 0.1017 0.2499 0.2946

(the standard errors are shown within parentheses.)

Table 2: Illustrative results for Case 1 with n = 500

i 1 2 3 4 5 [1, 2]
fi 90 70 40 80 20 200
fi/n 0.18 0.14 0.08 0.16 0.04 0.40
p̂MLE
i

(s(p̂iMLE))

0.2025
(0.0144)

0.1575
(0.0140)

0.08
(0.0121)

0.16
(0.0163)

0.04
(0.0087)

0.36
(0.0100)

p̂Ri
(s(p̂Ri ))

0.2020
(0.0145)

0.1580
(0.0146)

0.0800
(0.0121)

0.1596
(0.0166)

0.0401
(0.0089)

0.3600
(0.0102)

p̂i(Bayes) 0.1814 0.1467 0.0791 0.1563 0.0424 0.3938

(the standard errors are shown within parentheses.)

Remark 3. One can obtain bootstrapping results for “Case-2” and “Case-3” in a similar manner. The

likelihood and log-likelihood functions for “Case-2” can be written down along the lines of (2.6) and (2.7),

whereas the estimated probabilities are as per (2.8) and (2.9). Expressions for the asymptotic variances of
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the estimated probabilities for “Case-2” are derived in Appendix A.2 (found in the supplement). Further,

the likelihood and log-likelihood functions for “Case-3” can be written down along the lines of (2.10) and

(2.11). However the estimated probabilities do not have closed-form analytical solutions and require either

a numerical maximization or parametric bootstrapping, as demonstrated in this section for “Case 1”.

4.2 Analysis for a Real Data set

We now present a real data example which demonstrates the applicability of estimators discussed here. As

the entire world suffers from the current COVID-19 pandemic, there has been an ever increasing demand

for a software where a group is able to conduct online meetings and live sessions. Many competitors have

cropped up in the market. The following survey was conducted at the University of California, Santa Barbara

by one of the authors recently, which asked a class of students about their overall experience with regards

to one such widely used software. They could give ratings of 1 through 5 (5 being the highest rating) along

with a couple of “interval ratings” consisting of [1, 2] and [4, 5]. Data is collected from a group of n = 90

students from the class. This falls in the paradigm of our current problem, in particular, “Case-2”, given in

Section 2.2, and the likelihood and log-likelihood functions take the following forms:

L = pf11 p
f2
2 p

f3
3 p

f4
4 p

f5
5 (p1 + p2)f12(p4 + p5)f45 ,

and,

logL = f1 log p1 + ...+ f5 log p5 + f12 log(p1 + p2) + f45 log(p4 + p5),

where p3 = (1− 2p1 − 2p2 − 2p4 − 2p5). We then obtain the estimated probabilities (MLEs) from (2.8) and

(2.9). Table 3 outlines results for these students’ observed frequencies. Note that all these results are from

a single run (single question in the survey).

Table 3: Real data example for Case 2 with n = 90.

i 1 2 3 4 5 [1, 2] [4, 5]
fi 2 8 13 21 6 11 29
fi/n 0.022 0.088 0.144 0.233 0.066 0.122 0.322
p̂MLE
i 0.023 0.093 0.144 0.241 0.069 0.116 0.31

As can be seen from the above table, the intervals [1, 2] and [4, 5] put a slight additional mass on

p̂MLE
1 , p̂MLE

2 as well as p̂MLE
4 , p̂MLE

5 compared to the original values of fi/n, i = 1, 2, 4, 5.

5 Conclusions

In this paper we develop a middle-censoring scheme under a multinomial setup which allows outcomes to

fall within intervals besides individual categories. Although the general framework has been presented for

estimating the individual probabilities, analytical solutions become onerous pretty quickly and may need

10



numerical solutions. To illustrate the ideas, we consider special cases and demonstrate how the Maximum

Likelihood Estimators work out, as well as under a Bayesian setup. Also provided are the asymptotic

variances of the multinomial probability vector under these cases. Parametric bootstrap has been suggested

for getting the estimates and their variances when the MLEs get complicated. A real data analysis is carried

out illustrating the results derived.
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