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Abstract

Stochastic modelling of fatigue (and other material’s deterioration), as well as of
cumulative damage in risk theory, are often based on compound sums of independent
random variables, where the number of addends is represented by an independent count-
ing process. We consider here a cumulative model where, instead of a renewal process
(as in the Poisson case), a linear birth (or Yule) process is used. This corresponds to
the assumption that the frequency of “damage” increments accelerates according to the
increasing number of “damages”. We start from the partial differential equation satisfied
by its transition density, in the case of exponentially distributed addends, and then we
generalize it by introducing a space-derivative of convolution type (i.e. defined in terms
of the Laplace exponent of a subordinator). Correspondingly, we analyze the related cu-
mulative jump processes under a general infinitely divisible distribution of the (positive)
jumps. Some special cases (such as the stable, tempered stable, gamma and Poisson) are
presented.

Keywords: Integro-differential equations, Convolution-type derivatives, Cumulative
damage models, First-passage time, Infinitely divisible laws.
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1 Introduction

Compound counting processes, especially in the Poisson case, are widely studied and applied
in many different fields: in reliability theory (for studying the development of fatigue in
materials) and in collective risk theory, where many cumulative damage models are defined
in terms of the following sum

Y (t) :=

N(t)∑
j=0

Xj . (1.1)

The addends Xj are assumed to be i.i.d. random variables, for j = 1, 2, ..., and N :=
{N(t), t ≥ 0} is an independent counting (i.e. a non-negative, integer valued and non-
decreasing) stochastic process. In the special case where N is a homogeneous Poisson process,
with rate λ, the well-known compound Poisson process is obtained.
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Under the assumption that the counting process N is Poisson with parameter λ > 0, and
the jumps are exponentially distributed with parameter ξ, it has been proved in [2] that the
distribution of the compound Poisson process defined in (1.1), can be written in terms of a
Wright function. Moreover the density of its absolutely continuous component fY (y, t), for
y, t > 0 satisfy the following differential equation

ξ
∂

∂t
f = −

[
λ+

∂

∂t

]
∂

∂y
f, (1.2)

with conditions {
f(y, 0) = 0∫ +∞

0 f(y, t)dy = 1− e−λt . (1.3)

This process has been generalized in [2] to the fractional case and in [3] the assumption of
Gamma distributed jumps has been considered.

We consider here the cumulative process (1.1), when the number of addends, instead of
being represented by a renewal counting process (as in the Poisson case), is assumed to be a
linear birth (or Yule) process B := {B(t), t ≥ 0}, with one progenitor and with rate λk = kλ,
for k = 1, 2, ..., i.e.

Y (t) =

B(t)∑
j=1

Xj , t ≥ 0, (1.4)

under the assumption that Xj are i.i.d. positive random variables, independent from B.
This model can be also described by assuming that each member of a population gives birth
independently to one offspring at an exponential time with rate λ. Moreover each member
of the population produces a random (positive) “damage” that contribute individually to
the “total damage” of the population. Alternatively, we can assume that Xj ’s represent the
claim size of the j-th policy holder and that the number of claims for the insurance company
evolves in time according to a birth process B(t), i.e. when, for example, the arrival rate of
the new claims is proportional to the number of the claims previously arrived. In this case a
crucial random variable is represented by the time to ruin of the company, i.e.

τ := inf{t : Y (t) > ct+ u}, u, c > 0,

where u is the initial capital and c is constant risk premium rate. For applications to the risk
theory of compound birth processes, see the very recent paper [22].

This kind of process has been introduced by [23] for modelling crack growth with accel-
erating frequency of increments as the crack grows. Also in the cumulative models applied
to reliability theory, the study of the first-passage time through a certain critical value, i.e.
Tβ = inf{t ≥ 0 : Y (t) > β}, is crucial. In particular, Tβ is the fatigue failure time, in the
cumulative fatigue model. Since, in case of non-negative addends, Y (t) is non-decreasing for
any t, we get

P{Tβ > t} = P{Y (t) < β} = FY (β, t). (1.5)

We recall that the birth process B is a continuous-time Markov process and, in the linear
case, its probability mass function is given by
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pn(t) := P {B(t) = n|B(0) = 1} = e−λt
(

1− e−λt
)n−1

, t ≥ 0, n = 1, 2, ...

In the fractional case, the birth processes have been studied in [19], [20] and [4]. In [14] a
non-markovian generalization of the Yule process has been introduced.

We start by deriving the partial differential equation satisfied by the transition density of
(1.4) in the case of exponentially distributed addends; then we generalize it by introducing
a space-derivative Dgy of convolution-type (defined by means of the Laplace exponent g(θ) of
a subordinator). More precisely, we will be concerned with the the solution to the integro-
differential equation

∂

∂t
f(y, t) = −λe

λt

ξ
Dgy [f ∗ f ] (y, t), y, t, λ, ξ > 0, (1.6)

under certain initial conditions, where we denote by f1 ∗ f2 the convolution of the functions
f1 and f2. For the (integral) definition of Dgy see (1.8) below.

We will prove that the solution of (1.6) coincides with the density fYg of (1.4) when
the distribution of the addends is extended (from the exponential case) inside the class of
infinitely divisible laws. Note that, for g(θ) = θα and α ∈ (0, 1), the derivative Dgy reduces to
a Caputo fractional derivative of order α (see (1.8) below) and then equation (1.6) becomes
a fractional differential equation. Some special cases (such as the stable, tempered stable,
gamma and Poisson cases) will be illustrated. Finally, in order to compare the behavior of the
different processes introduced and to draw some conclusions on their possible applicability,
we present some plots of simulated trajectories, under various assumptions on the addends’
distribution. As we will see, our model will prove to be more flexible and adaptable to the
real data provided that the appropriate distributions of the addends and the corresponding
parameters’ values are chosen.

Let g : (0,+∞) → R be a Bernstein function, i.e. let g be non-negative, infinitely
differentiable and such that, for any x ∈ (0,+∞),

(−1)n
dn

dxn
g(x) ≤ 0, for any n ∈ N.

A function g is a Bernstein function if and only if it admits the following representation

g(x) = a+ bx+

∫ +∞

0
(1− e−sx)ν(ds),

for a, b ∈ R, where ν is the corresponding Lévy measure and (a, b, ν) is called the Lévy
triplet of g. Then a subordinator is the stochastic process with non-decreasing paths Ag :=
{Ag(t), t ≥ 0} , such that

Ee−θAg(t) = e−g(θ)t, (1.7)

i.e. g(θ) is the Laplace exponent of Ag. Let moreover Lg(t), t ≥ 0, be its inverse, i.e.

Lg(t) = inf {s ≥ 0 : Ag(s) > t} , t > 0

3



and lg(x, t) = Pr {Lg(t) ∈ dx} /dx be its transition density.
We recall the definition of the convolution-type derivative on the positive half-axes, in the

sense of Caputo (see [24], Def.2.4, for b = 0) :

Dgt u(t) :=

∫ t

0

d

ds
u(t− s)ν(s)ds, t > 0, (1.8)

where ν is the tail of the Lévy measure ν, i.e. ν(s) =
∫ +∞
s ν(dz). Convolution-type derivatives

(or derivatives defined as integrals with memory kernels) have been treated recently by many
authors: see, among the others, [13], [8], [21].

The Laplace transform of Dgt is given by∫ +∞

0
e−θtDgt u(t)dt = g(θ)ũ(θ)− g(θ)

θ
u(0), R(θ) > θ0, (1.9)

(see [24], Lemma 2.5). It is easy to check that, in the trivial case where g(θ) = θ, the
convolution-type derivative coincides with the first-order derivative, while, for g(θ) = θα, for
α ∈ (0, 1), it coincides with the Caputo fractional derivative (see e.g. [12], p.90) of order α.

2 The exponential case

As a preliminary result, we consider the case of the compound birth process Y with expo-
nentially distributed addends: see [6] and [23] for possible applications, in survival analysis
and reliability theory, respectively.

Lemma 2.1 Let Xj be i.i.d. Exp(ξ), for j = 1, 2, ..., then the density of Y, defined in (1.4),
i.e.

fY (y, t) = ξ exp
{
−λt− ξe−λty

}
, y, t ≥ 0, (2.1)

satisfies the equation
∂

∂t
f = −λ ∂

∂y
(yf) , y, t ≥ 0, (2.2)

with f(y, 0) = fX(y) = ξe−ξy.

Proof. By a conditioning argument, we can write

fY (y, t) =

∞∑
n=1

pn(t)f
∗(n)
X (y),

which, under Laplace transform, gives

f̃Y (θ, t) =

∞∑
n=1

pn(t)f̃
∗(n)
X (θ) =

∞∑
n=1

pn(t)
[
f̃X(θ)

]n
(2.3)

= e−λt
∞∑
n=1

(
1− e−λt

)n−1
[

ξ

ξ + θ

]n
=

ξe−λt

θ + ξe−λt
.
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It can be easily checked that (2.1) satisfies equation (2.2) and the initial condition.

In Fig.1 we plot the probability density function (hereafter pdf) of the process Y , defined
in (1.4) (in the case of exponentially distributed addends), estimated directly from the re-
alizations of the process. Moreover we compare it with the theoretical pdf given in (2.1),
for different values of t. One can notice the perfect agreement between the theoretical and
empirical pdf’s.
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Figure 1: Compound birth process Y , with exponential distributed addends: theoretical and
empirical pdf’s for different values of t and for λ = ξ = 1.

Remark 2.1 Equation (2.2) can be considered as special case of the Fokker-Planck equation
with null diffusion coefficient. Moreover, it can be alternatively written as

∂

∂t
f = −λe

λt

ξ

∂

∂y
(f ∗ f) , y, t ≥ 0. (2.4)

Indeed, we have that

eλt

ξ

∂

∂y
(fY ∗ fY ) =

eλt

ξ
ξ2e−2λt ∂

∂y

∫ y

0
exp

{
−ξe−λtz

}
exp

{
−ξe−λt(y − z)

}
dz

= ξe−λt
∂

∂y

(
y exp

{
−ξe−λty

})
=

∂

∂y
(yfY ) .

In the next section, we will generalize the governing equation of our model in the form given
in (2.4).

The distribution of the first-passage time of Y through the level β > 1 can be written as
follows:

P{Tβ < t} =

{
0, t ≤ 0
exp

{
−ξe−λtβ

}
, t > 0

(2.5)

by considering (1.5). The jump in zero of (2.5) is equal to P{Tβ = 0} = P{X > β} = e−ξβ.
The absolutely continuous component thus displays a Gumbel-type distribution. Its mean
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value can be obtained as follows:

ETβ =

∫ +∞

0

[
1− exp

{
−ξe−λtβ

}]
dt = −

∞∑
j=1

(−ξβ)j

j!

∫ +∞

0
e−λtjdt (2.6)

= − 1

λ

∞∑
j=1

(−ξβ)j

j2(j − 1)!
=
ξβ

λ

∞∑
l=0

(−ξβ)l

l!

Γ(l + 1)2

Γ(l + 2)2

=
ξβ

λ
2Ψ2

[
−ξβ| (1, 1) (1, 1)

(2, 1) (2, 1)

]
where

pΨq

[
x| (al, αl)1,p

(bl, βl)1,q

]
, x, al, bj ∈ C, αl, βj ∈ R, l = 1, ..., p, j = 1, ..., q

for p, q ∈ N, is the Fox-Wright function (see [12], p.56). The asymptotic behavior of ETβ can
be studied by considering formula (1.12.68), p.67 in [12], so that we can write

ETβ =
ξβ

λ
H1,2

2,3

[
ξβ| (0, 1) (0, 1)

(0, 1) (−1, 1) (−1, 1)

]
,

where

Hm,n
p,q

[
x| (ap, Ap)

(bq, Bq)

]
, x, ai, bj ∈ C, Al, Bj ∈ R+, i = 1, ..., p, j = 1, ..., q

for p, q,m, n ∈ N, with 0 ≤ n ≤ p, 1 ≤ m ≤ q, is the H-function (see e.g. [17], p.2). Then, by
applying Theorem 1.2, p.19 in [17], for µ = α = 1 > 0 and d = min {−1,−1} = −1 we get,
for β → +∞,

ETβ '
ξβ

λ
O(β−1) =

ξ

λ
O(1).

3 The infinitely divisible cases

We now extend the previous results, by considering the relaxation equation with the convolution-
type derivative defined in (1.8). Indeed, it is well-known that the survival (or reliability)
function ΦX(x) :=

∫ +∞
x fX(u)du of the r.v. X ∼ Exp(ξ) satisfies the so-called relaxation

equation
d

dx
u(x) = −ξu(x), x ≥ 0, (3.1)

with initial condition u(0) = 1. As we will see later, replacing the space-derivative with Dgx
corresponds to generalize the distribution of X, inside the class of infinitely divisible r.v.’s.

Lemma 3.1 Let Ag denote the subordinator defined by (1.7), then the initial-value problem{
Dgxu(x) = −ξu(x)
u(0) = 1,

(3.2)

with x ≥ 0, ξ > 0, is satisfied by

u(x) = ξ

∫ +∞

0
e−ξtP {Ag(t) ≥ x} dt. (3.3)
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Proof. We take the Laplace transform of (3.2), by considering (1.9), and get, for R(θ) > θ0,

g(θ)ũ(θ)− g(θ)

θ
u(0) = −ξũ(θ),

so that

ũ(θ) =
g(θ)

θ

1

g(θ) + ξ
. (3.4)

On the other hand, from (3.3) we get

ũ(θ) = ξ

∫ +∞

0
e−θxdx

∫ +∞

0
e−ξtdt

∫ +∞

x
hg(y, t)dy = ξ

∫ +∞

0
e−ξtdt

∫ +∞

0
hg(y, t)dy

∫ y

0
e−θxdx

=
ξ

θ

∫ +∞

0
e−ξtdt

∫ +∞

0
hg(y, t)(1− e−θy)dy =

ξ

θ

[
1

ξ
− 1

ξ + g(θ)

]
,

which is equal to (3.4). The initial condition is clearly satisfied by (3.3).
In the trivial case g(θ) = θ, the differential equation in (3.2) reduces to (3.1), which is

satisfied by ΦX(x) = e−ξx. For g(θ) = θα, α ∈ (0, 1), equation (3.2) coincides with the well-
known fractional relaxation equation (see e.g. [9], [16] and [1]). In all the other cases, the
solution corresponds to the survival function of a subordinator stopped at an independent
exponential time, i.e. Ag(X).

Alternatively, (3.3) gives the probability that the subordinator Ag hits (or crosses) a
certain level in a random time smaller than an exponentially distributed one. Indeed, by
considering that

P {Ag(t) ≥ x} = P {Lg(x) ≤ t} ,

we can write the solution of (3.2) as

u(x) = ξ

∫ +∞

0
e−ξtP {Lg(x) ≤ t} dt = P {Lg(x) ≤ X} , (3.5)

with X ∼ Exp(ξ). In the special case where g(θ) =
√
θ, the inverse stable subordinator Lg

is equal in distribution to a Brownian motion reflecting in the origin and thus (3.5) reduces
to the probability that the Brownian motion is under an exponentially distributed barrier at
time x, i,e, P {|B(x)| ≤ X} (see [1]).

Let us now consider the r.v.’s Xg
j , for j = 1, 2, ..., with survival function ΦX(g) coincid-

ing with (3.3). They are thus non-negative, infinitely divisible, with the following Laplace
exponent

ψX(g)(θ) := − logEe−θX
(g)

= log

(
1 +

g(θ)

ξ

)
, ξ, θ > 0. (3.6)

Clearly, in the special case g(θ) = θ, formula (3.6) reduces to the Laplace exponent of the
exponential law. Thus we assume here that the density of the addends in (1.1) is given by

fX(g)(x) = ξ

∫ +∞

0
e−ξthg(x, t)dt, ξ, y > 0, (3.7)

(where hg(·, t) is the density of the subordinator Ag), or, alternatively, that the following

equality in law holds : X(g) d
= Ag(X).
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Theorem 3.2 The solution to equation

∂

∂t
f(y, t) = −λe

λt

ξ
Dgy [f ∗ f ] (y, t), y, t > 0, (3.8)

under the initial condition f(y, 0) = fX(g)(y), is given by the density function of the process

Yg(t) =

B(t)∑
j=1

X
(g)
j , t ≥ 0. (3.9)

Proof. We take the Laplace transform of (3.8), w.r.t. y, so that we get, by considering (1.9):

∂

∂t
f̃(θ, t) = −λe

λt

ξ
g(θ)

[
f̃(θ, t)

]2
, (3.10)

with f̃(θ, 0) = ξ
ξ+g(θ) . We can check, by differentiating, that the solution to (3.10) is equal to

f̃(θ, t) =
ξe−λt

ξe−λt + g(θ)
. (3.11)

On the other hand we can start from the distribution function of (3.9) which can be written
as

FYg(y, t) := P{Yg(t) < y} =
∞∑
n=1

P (B(t) = n)F
∗(n)
Xg

(y), (3.12)

where F
∗(n)
Xg

denotes the n-th convolution of FX(g)(x) := P{X(g) < x}. Under the assumption

of absolutely continuous and positive random addends X
(g)
j , for j = 1, 2, .., with density

fX(g)(x) := P{X(g) ∈ dx}/dx, we can write

F
∗(n)
Xg

(x) =

∫ +∞

0
F
∗(n−1)
Xg

(x− z)fX(z)dz.

By denoting g̃(θ) :=
∫ +∞

0 e−θxg(x)dx the Laplace transform of g : R+ → R, we get

F̃
∗(n)
Xg

(θ) =
[
F̃Xg(θ)

]n
=

[
f̃Xg(θ)

]n
θ

. (3.13)

Therefore we have that

f̃Yg(θ, t) =

∞∑
n=1

e−λt
(

1− e−λt
)n−1

[
ξ

ξ + g(θ)

]n
(3.14)

=
ξe−λt

ξe−λt + g(θ)
,

which coincides with (3.11).
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As far as the first-passage time Tβ of the process Yg through the level β > 1 is concerned,
we can derive the general formula of the Laplace transform of its distribution function, by
considering (1.5) and by taking into account (3.12) and (3.13), as follows:

L [P{Tβ < t}; θ] = L [P{Y (t) > β}; θ] =
1

θ
− 1

θ
f̃Yg(θ, t) (3.15)

=
g(θ)

θ [e−λtξ + g(θ)]
.

Remark 3.1 The following time-changed representation of the process Yg can be checked, by
proving the equality of the one-dimensional distributions:

Yg(t)
d
= Ag(Y (t)), (3.16)

for any t ≥ 0, where Y is the compound birth process (with exponential jumps) defined in (1.4)
and supposed independent of the subordinator Ag. Indeed, the Laplace transform of Ag(Y (t))
can be written, for any t ≥ 0, as

Ee−θAg(Y (t)) =

∫ +∞

0
Ee−θAg(z)fY (z, t)dz

=

∫ +∞

0
e−g(θ)zfY (z, t)dz

= [by (2.3)]

=
ξe−λt

g(θ) + ξe−λt
,

which coincides with (3.14). Thus (3.16) follows from the unicity of the Laplace transform.

3.1 Some special cases

(i) The Mittag-Leffler case
Let g(θ) = θα, for α ∈ (0, 1], then the law of the addends is Mittag-Leffler of parameters

α, ξ and, in this special case, we can obtain an explicit and simple formula for the density of
Yg := Yα. Recall that the Mittag-Leffler function, with two parameters, is defined as

Eβ,γ(x) =

∞∑
j=0

xβj

Γ(βj + γ)
, x, β, γ ∈ C, Re (β) ,Re (γ) > 0. (3.17)

Then the density of Xg can be obtained by applying the well-known formula of the Laplace
transform of the Mittag-Leffler function (see [12], formula (1.9.13), for ρ = 1), i.e.

L
{
xγ−1Eβ,γ(Axβ); s

}
=

sβ−γ

sβ −A
, (3.18)

with Re (β) ,Re (γ) > 0, A ∈ R and s > |A|1/Re(β). Indeed we have

fX(α)(x) = L−1

{
ξ

ξ + θα
;x

}
= ξxα−1Eα,α(−ξxα), x, ξ > 0, α ∈ (0, 1], (3.19)
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which is the density of Aα(X), where Aα is the α-stable subordinator and X an independent
exponential r.v. The equation (3.8), in this case, reduces to the following space-fractional
differential equation of order α,

∂

∂t
fYα(y, t) = −λ ∂

α

∂yα
[fYα ∗ fYα ] (y, t), y, t > 0, (3.20)

with initial condition fYα(y, 0) = ξxα−1Eα,α(−ξyα).
The derivative appearing in (3.20) is the Caputo fractional derivative defined as follows:

let α > 0, m = bαc + 1 and assume that u : [a, b] → R, b > a, is an absolutely continuous
function, with absolutely continuous derivatives up to order m on [a, b], then, for x ∈ [a, b],

dα

dxα
u(x) :=

{
1

Γ(m−α)

∫ x
a

1
(x−s)α−m+1

dm

dsmu(s)ds, α /∈ N0
dm

dxm , α = m ∈ N0
(3.21)

is the Caputo fractional derivative of order α (see [12], p.92). Indeed, for g(θ) = θα, we have
that

Dgx =
dα

dxα
, (3.22)

as it can be checked by considering (1.8) with the Lévy measure ν(ds) = αs−α−1ds/Γ(1−α)
and the tail Lévy measure ν(ds) = s−αds/Γ(1− α) (see Remark 2.6 in [24] for details).

The density of the process (3.9), which we denote now as Yα, is given by

fYα(y, t) = ξe−λtyα−1Eα,α(−ξe−λtyα), y, t ≥ 0, α ∈ (0, 1], (3.23)

as can be obtained by inverting the Laplace transform (3.14), by means of (3.18), with
g(θ) = θα and β = γ = α.

The Mittag-Leffler r.v. has infinite moments and thus the same holds for the process Yα.
This is confirmed by the representation Aα(Z) of the random addends, since it is well-known
that the stable law has infinite moments of order greater than α.

The distribution of the first-passage time through the level β > 1 in this case can be
obtained, by considering (3.15), which reduces to

L [P{Tβ < t}; θ] =
θα−1

θα + ξe−λt
. (3.24)

By inverting (3.24) we get

P{Tβ < t} =

{
0, t ≤ 0
Eα,1(−ξe−λtβα), t > 0

, (3.25)

which coincides with (2.5) for α = 1. The jump in the origin of (3.25) coincides with P{Tβ =
0} = Eα,1(−ξβα) = P (X(α) > β).

Moreover, the previous probability converges to zero, as β tends to infinity, but with a
power law (instead of exponentially), as can be checked by recalling the well-known asymp-
totic behavior of the Mittag-Leffler function (see [12], formula (1.8.11)), for |z| → +∞, i.e.

Eβ,γ(z) = −
n∑
k=1

z−k

Γ(γ − βk)
+O

(
z−n−1

)
, n ∈ N, (3.26)
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where 0 < β < 2, µ ≤ arg(z) ≤ π, πβ/2 < µ < min{π, πβ}. Thus, for β → +∞, we get
P{Tβ < t} ' O(β−α).

The density of the absolutely continuous component is easily obtained by taking the first
derivative of (3.25) and reads

fTβ (t) =
λξe−λtβα

α
Eα,α(−ξe−λtβα), t > 0.

We thus obtain the definition of the following fractional extension of the reflected Gumbel
density

f(x) =
e−x

αEα,α+1(−βα)
Eα,α(−e−xβα), x > 0, (3.27)

where the normalizing constant is obtained as follows∫ +∞

0
e−xEα,α(−e−xβα)dx =

∫ 1

0
Eα,α(−zβα)dz = αEα,α+1(−βα).

The expected first-passage time through β can be obtained from (3.25), as follows:

ETβ = −
∫ +∞

0

∞∑
j=1

(−ξe−λtβα)j

Γ(αj + 1)
dt =

ξβα

λ

∞∑
l=0

(−ξβα)l (Γ(l + 1))2

l!Γ(αl + α+ 1)Γ(l + 2)

=
ξβα

λ
2Ψ2

[
−ξβα| (1, 1) (1, 1)

(α+ 1, α) (2, 1)

]
which reduces to (2.6) for α = 1. Its asymptotic behavior can be obtained by applying
Theorem 1.2, p.19 in [17], for µ = α > 0 and d = min {−1,−1} = −1 and α > 0, we get, for
β → +∞,

ETβ =
ξβα

λ
H1,2

2,3

[
ξβα| (0, 1) (0, 1)

(0, 1) (−α, α) (−1, 1)

]
' ξβα

λ
O((βα)−1) =

ξ

λ
O(1).

Thus the expected first-passage time through the level β converges to the same limit of the
exponential case, for any α, even though the expected value of Yα is infinite, while it is finite
for α = 1.

(ii) The tempered case
We consider now the case g(θ) = (µ+θ)α−µα, for µ > 0, which is the Bernstein function

of the tempered α-stable subordinator Aα,µ, for α ∈ (0, 1]. The law of the addends can be
written explicitly, by the well-known relationship between the density of the tempered stable
hα,µ(x, t) and that of the stable itself, i.e.

hα,µ(x, t) = exp{−µx− µαt}hα(x, t), x, t ≥ 0.

Since, in this case,

Yg(0)
d
= Aα,µ(X),

11



where X is again exponentially distributed with parameter ξ and independent of Aα,µ, we
have that

f
X

(α)
µ

(x) = ξe−µx
∫ +∞

0
e−ξt−µ

αthα(x, t)dt = ξe−µxxα−1Eα,α(−(ξ − µα)xα), (3.28)

which generalizes (3.19), for µ 6= 1. Analogously to the previous case, we can write the
transition density of the process Yg := Yα,µ as

fYα,µ(y, t) = ξe−λt−µyyα−1Eα,α(−(ξe−λt − µα)yα), y, t ≥ 0, α ∈ (0, 1]. (3.29)

Moreover, from Theorem 3.2, we get that (3.29) satisfies equation (3.20), where the fractional
α-order Caputo derivative must be replaced by the following Caputo-type tempered derivative

dα,µ

dxα,µ
u(x) :=

αµα

Γ(1− α)

∫ x

0
Γ(−α;µs)

d

ds
u(s)ds, α ∈ (0, 1), µ > 0,

(where Γ(η, x) :=
∫ +∞
x e−ttη−1dt is the upper incomplete Gamma function). Indeed the tail

Lévy measure reads ν(ds) = αµαΓ(−α;µs)ds
Γ(1−α) (see [24]). In this case, the Laplace transform of

the first-passage time distribution (3.15) reduces to

L [P{Tβ < t}; θ] =
(µ+ θ)α − µα

θ [e−λtξ + (µ+ θ)α − µα]
. (3.30)

By inverting (3.30) and denoting by γ(a;x) :=
∫ x

0 e
−tta−1dt the lower incomplete Gamma

function, we can write that, for t > 0,

P{Tβ < t} = 1− ξe−λt

µα

∞∑
j=0

(
−ξe

−λt − µα

µα

)j
γ(αj + α;µβ)

Γ(αj + α)

= 1− ξβαe−λt

µα

∞∑
j=0

(
−β

α(ξe−λt − µα)

µα

)j
E1,αj+α+1(µβ).

where we have considered formula (3.7) p.316 in [18] together with formula (4.2.8) in [10].
We now compare (in Fig.2) the pdf’s of the compound birth process in the two special cases
of Mittag-Leffler and tempered stable addends (given in (3.23) and (3.29), respectively) with
that of the exponential case: with respect to the latter, the pdf’s fall generally quicker while
they have longer tails. Moreover the presence of the tempering parameter in the tempered
stable case causes both an initial slower fall of the density compared to the pure α-stable
case and faster fall for large values of y.

In Fig.3 we explore the influence of the tempering parameter µ for the pdf given in (3.29),
in the tempered case: as expected, the greater the value of µ the faster the fall of the tails.
Finally, we compare the first crossing time probability of Y through the level β, in the usual
three cases, i.e. exponential, stable and tempered stable, by plotting it with respect to time
(in Fig.4) and to β (in Fig.5).
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Figure 2: The pdf’s of the compound birth process Y , with exponential, Mittag-Leffler and
tempered stable addends: for t = 1, λ = 1, ξ = 0.5, α = 0.2(a), 0.5(b), 0.8(c), µ = 10.
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Figure 3: The pdf’s of the compound birth process Yg, with tempered stable addends, for
different values of µ and for ξ = λ = 1, α = 0.8, t = 1.
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Figure 4: The first crossing probability of the level β, for µ = 5, ξ = λ = 1, α = 0.5, t = 1.
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Figure 5: The first crossing probability of the level β=2, for µ = 5, ξ = λ = 1, α = 0.5.

(iii) The gamma case
For g(θ) = log

(
1 + θ

b

)
, for b > 0, which is the Bernstein function associated to the gamma

distribution, the law of the addends XΓ can be written as follows:

fXΓ
(x) = ξe−bx

∫ +∞

0

bt

Γ(t)
xt−1e−ξtdt

with mean value EXΓ = 1/ξb and Laplace transform

f̃XΓ
(θ) = ξ

∫ +∞

0
e−bx−θx

∫ +∞

0

bt

Γ(t)
xt−1e−ξtdtdx (3.31)

= ξ

∫ +∞

0

(
be−ξ

b+ θ

)t
dt =

ξ

log(b+ θ)− log (be−ξ)
.

In this case, by considering that

log

(
1 +

θ

b

)
=

∫ +∞

0
(1− e−θx)x−1e−bxdx,

we can write the tail Lévy measure as

ν(ds) = ds

∫ +∞

s
z−1e−bzdz = ds

∫ +∞

bs
ω−1e−ωdω = E1(bs)ds,

where E1(x) = −Ei(−x) and Ei(x) denotes the exponential integral. Thus the differential
equation governing the process (1.4) coincides with (2.2) with convolution-type derivative
defined as follows:

Dgt u(t) :=

∫ t

0

d

ds
u(t− s)E1(bs)ds.

In this case the Laplace transform of the first-passage time distribution (3.15) reduces to

L [P{Tβ < t}; θ] =
log(θ + b)− log b

θ [e−λtξ + log(θ + b)− log b]
,

14



which can be inverted by considering (3.31), as follows, for t > 0:

P{Tβ < t} = ξe−λt
∫ +∞

β
e−by

∫ +∞

0

bz

Γ(z)
yz−1 exp{−ξe−λtz}dzdy

= ξe−λt
∫ +∞

0

Γ(z;βb)

Γ(z)
exp{−ξe−λtz}dz.

The expected first-passage time through β can be written as follows:

ETβ = ξ

∫ +∞

0

γ(z;βb)

Γ(z)

∫ +∞

0
e−λt exp{−ξe−λtz}dtdz

=
ξ

λ

∫ +∞

0

γ(z;βb)

Γ(z)

∫ 1

0
exp{−ξuz}dudz

=
1

λ

∫ +∞

0

γ(z;βb)

Γ(z + 1)
(1− e−ξz)dz.

By applying the monotone convergence theorem and considering that γ(z;βb)
Γ(z+1) →

1
z , as β →∞,

it is easy to check that ETβ is infinite in the limit.
(iv) The Poisson case
Let g(θ) = λ(1−e−θ), for λ > 0, which is the Bernstein function associated to the Poisson

distribution and with Lévy measure ν(s) = λδ(s−1), where δ(·) is the Dirac’s delta function.
In this case, since the distribution of the addends X(λ) is discrete and integer valued, we must

adapt the notation of the previous sections: let p
(λ)
x := P{X(λ) = x} denote the addends’

probability mass function and let p̃
(λ)
X (θ) :=

∑∞
x=0 e

−θxp
(λ)
x , then (3.13) must be replaced by

F̃
∗(n)
X (θ) =

[
p̃

(λ)
X (θ)

]n
θ

.

Moreover, formula (3.7) is substituted by

p(λ)
x = ξ

∫ +∞

0
e−ξtP{N(t) = x}dt

Correspondingly, we have, for Yλ(t) =
∑B(t)

j=1 X
(λ)
j , that q

(λ)
x (t) := P{Yλ(t) = x} with Laplace

transform

q̃
(λ)
Y (θ) :=

∞∑
x=0

e−θxq(λ)
x (t) =

ξe−λt

ξe−λt + g(θ)
=

ξe−λt

ξe−λt + λ(1− e−θ)
. (3.32)

It is easy to see that, in this special case, the addends follow a geometric distribution of

parameter p = ξ/(ξ + λ): indeed, here X(λ) d
= N(X), with X ∼ Exp(ξ) independent of N,

so that the probability mass function of X(λ) can be written as

p(λ)
x = ξ

∫ +∞

0
e−ξtP{N(t) = x}dt =

ξ

λ+ ξ

(
λ

λ+ ξ

)x
, x = 0, 1, ... (3.33)

The distribution of the process Yλ can be written, for y = 0, 1, ... and for any t ≥ 0, as

q(λ)
y (t) =

ξe−λtλy

y!

∫ +∞

0
e−(ξe−λt+λ)zzydz =

ξe−λtλy

(ξe−λt + λ)
y+1 , (3.34)
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which coincides with a geometric probability mass function with parameter p = ξe−λt/(ξe−λt+
λ). This can be checked by evaluating the Laplace transform of (3.34), which coincides with
(3.32).

The distribution function of the first-passage time through the level β is given by

P{Tβ < t} =

{
0, t ≤ 0(

λ
λ+ξe−λt

)β+1
, t > 0

,

which converges to zero, for β → +∞.
As far as the differential equation satisfied by the survival function of N(X), we can spe-

cialize the definition (1.10), by considering that ν(ds) = λds
∫ +∞
s δ(x− 1)dx = λds1(−∞,1](s)

and thus

Dgt u(t) = λ

∫ t∧1

0

d

ds
u(t− s)ds = λ

{
u(t)− u(0), t < 1
u(t)− u(t− 1), t ≥ 1

Its Laplace transform reads∫ +∞

0
e−θtλ[u(t)− u ((t− 1) ∨ 0)]dt (3.35)

= λũ(θ)− λ
∫ 1

0
e−θtu(0)dt− λ

∫ +∞

1
e−θtu(t− 1)dt

= λ(1− e−θ)ũ(θ)− λ(1− e−θ)
θ

u(0),

which coincides with (1.9), for this choice of g. As a consequence, by taking into account
Lemma 3.1, we obtain that the survival function of the addends P{X(λ) ≥ x} satisfies the
following equation (for x = 1, 2, ..)

(λ+ ξ)u(x) = λu(x− 1)

with u(0) = 1, as can be checked also directly by considering that P{X(λ) ≥ x} =
(

λ
λ+ξ

)x
,

in this case. Theorem 3.2 can be formulated as follows, with the convention that q−1(t) = 0:
the solution to the initial value problem

∂

∂t
qy(t) = −λ2 e

λt

ξ
[(qy(t) ∗ qy(t))− (qy−1(t) ∗ qy−1(t))] (3.36)

= −λ2 e
λt

ξ
[I −∆] (qy(t) ∗ qy(t))

(with t ≥ 0, y = 0, 1, ..., and qy(0) = ξλy/(ξ + λ)y+1), coincides with (3.34). This can be

checked either directly, by considering that q
(λ)
y (t) ∗ q(λ)

y (t) = ξ2e−2λtλyy/(ξe−λt + λ)y+2, or
by taking the Laplace transform and verifying that the discrete analogue of (3.10) holds in
this case, i.e.

∂

∂t
q̃Y (θ) = −λ2 e

λt

ξ
(1− e−θ) [q̃Y (θ)]2 , (3.37)

for any t ≥ 0.
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4 Simulations and conclusions

In this section, we present simulated sample paths of the pure birth process and the com-
pound birth process defined in (1.4), under the distributions of the addends discussed above
and for certain chosen values of the parameters. They are implemented in R by means of the
following algorithms.

Algorithm 1: Simulation of the pure birth process

This algorithm gives the number of births B(t) with rate λk = kλ of the Yule process up
to a fixed time T .

1. [(a)]

2. Fix the parameters λ > 0 for the Yule process.

3. Set the initial population size init pop ← 1 , birth process b ← init pop as initial
population, n← 0, i← 1 and t← 0.

4. Repeat while t < T

• Generate exponential random variable E ∼ Exponential
(

1
λ(i+init pop−1)

)
.

• t← t+ E

• b← b+ 1 and i← i+ 1.

5. Next t.

Then b denotes the number of births B(t) occurred up to time T .

Algorithm 2: Simulation of the compound birth process

This algorithm gives the values of the compound birth process Y (t) =
∑B(t)

j=1 Xj with iid
Xj addends up to a fixed time T .

1. [(a)]

2. Choose n+ 1 time points 0 = t0, t1, . . . , tn = T.

3. Simulate pure birth events 1 = B(t0), B(t1), . . . , B(tn) using Algorithm 1

4. For each B(ti), i = 1, . . . , n computed in Step (b), simulate Xj random variable B(ti)
times.

5. For each i = 1, . . . , n, sum the B(ti) number of random variables Xj simulated in Step
(c) and store them as Y (ti).

6. The simulated values of the compound birth process up to time T isX1 = Y (t0), Y (t1), . . . , Y (tn)
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Note that in the above algorithm we consider the following distributions for the addends,
in order to simulate the compound birth process.

1. Exponential distribution with rate ξ.

2. Gamma distribution with shape parameter ξ and scale parameter b.

3. Mittag-Leffler distribution with parameters α and ξ (see [5], for γ = 1)

4. Tempered stable distribution with parameters α, ξ and µ (see [7], Algorithm 3.2 in [11]
and Algorithm 3 in [15]).

5. Poisson distribution with rate ξ.

(a) (b)

Figure 6: Sample paths of (a) the pure birth process (with λ = 2) (b) the compound birth
process with exponential addends (with λ = 2 and ξ = 2)

We notice that, in the case of exponential addends, the simulated trajectories of the
compound birth process display a much slower growth with respect to the pure birth model:
indeed all the sample paths of the first process are under level 5 at time t = 30 (see Fig.6
(b)), while, in the second case, they are all over the same level (see Fig.6 (a)). The reason
can be essentially explained by noting that the jumps can be of length smaller that one, only
in the compound case. In the following figures we compare the gamma and the Mittag-Leffler
cases, where we observe a behavior which is intermediate between the previous ones.

Under the tempered stable distribution of the addends, the growth of the sample paths is
similar to the exponential case (for the same choice of the parameters λ and ξ): all of them
are under level 5 at time t = 30, as shown in Fig.8 (a). Finally, in the Poisson case, a growth
even faster than the pure birth model is recovered, since again the jumps are integer valued.

We can draw the conclusion that the compound birth process with infinitely divisible
(positive) addends is a more flexible model with respect to the pure birth one and permits

18



(a) (b)

Figure 7: Sample paths of the compound birth process with (a) Gamma addends (with λ = 2,
ξ = 3, b = 3) (b) Mittag-Leffler addends (with λ = 2, ξ = 2, α = 0.7)

(a) (b)

Figure 8: Sample paths of the compound birth process with (a) tempered stable addends
(with λ = 2, ξ = 2, α = 0.7, µ = 2) (b) Poisson addends (with λ = 2, ξ = 3)
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a better fit of the real data, by choosing proper distributions of the addends together with
their parameters’ value.
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