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Abstract

In this article we consider analysis of progressive Type-II censoring scheme in pres-
ence of competing risks under simple step stress modeling. We assume there are two
competing risk factors in each stress level and lifetime distribution of each one of them
is one parameter exponential distribution. Further, we assume the data set is following
cumulative exposure model (CEM) in the stress levels. Based on the joint likelihood of
the parameters, the conditional maximum likelihood estimators (MLEs) of the param-
eters are derived. Confidence intervals of the parameters based on their conditional
MLEs are constructed. We also construct percentile bootstrap confidence intervals of
the parameters. Further we carry out Bayesian analysis using Beta-gamma prior dis-
tribution to construct credible intervals of the parameters. A simulation experiment
has been performed to observe the performances of the model. Finally one specific
simulated data set has been analysed for illustrative purpose.
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1 Introduction

Censoring has become a part of life testing experiments where, the experiment terminates

before all of the undergoing units fail. This is done to save and reduce duration of the

experiment and cost incurred in manufacturing the units. There are several types of censoring

schemes applied in a life testing experiment. Among them, Type-I and Type-II are the most

popular censoring schemes. However in reality, it is not uncommon that some of the units

break down accidentally during the course of the experiment. Unfortunately neither of Type-

I or Type-II censoring scheme does allow to remove units during the experiment. Progressive

Type-II censoring, introduced by Herd [27] is one of the popular schemes, where one can

withdraw experimental units during the experiment. It can be described as follows. Suppose

there are n items put on the test with prefixed integer m(≤ n). Let us further choose non

negative integers R1, R2, . . . , Rm such that, m +
∑m

i=1Ri = n. At the failure time of i- th

unit, say ti, Ri number of units are withdrawn from the system. This procedure will continue

till the failure of m- th unit from the system takes place with the remaining Rm number of

units are removed from the system. It is to be noted that Type-II censoring scheme can be

obtained by taking R1 = R2 = . . . = Rm−1 = 0 and Rm = n−m.

In a typical life testing experiment it may be difficult to get sufficient number of fail-

ures under normal operating conditions. This is because of the advancement of science and

technology the products have become more long lasting and durable. In reality, it is very

much possible that there is a sudden change in the environment which causes a working

product to fail. For example, changes in environment including temperature changes, air

pressure fluctuations, humidity variations etc. could be responsible to stop working an elec-

tronic equipment. To carry out a statistical analysis, the experimenter artificiality changes
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the environment of the undergoing experiment to get early failures. In statistical literature

this is called as ‘accelerated life testing’ (ALT). There are different ways of conducting an

ALT experiment. One of the popular methods is known as ‘step stress life test’ (SSLT).

In an SSLT, the experimenter enforces different stress levels at different time points in the

middle of the experiment. More specifically, in SSLT experiment suppose n units are placed

in the experiment under the first or initial stress level S1. The units are then subjected

to k − 1 prefixed number of different stress levels say, S2, . . . , Sk at predefined time points

τ1 < τ2 < . . . < τk−1 respectively. Suppose for i = 1, 2, . . . , k, there are ni units fail in the

i-th stress level and
∑k

j=1 nj. Then the data set is

data =
{

0 < t1:n < . . . < tn1:n ≤ τ1 < tn1+1:n < . . . < t∑2
j=1 nj :n

≤ τ2 < t∑2
j=1 nj+1:n < . . . <

< t∑k−1
j=1 nj :n

≤ τk−1 < t∑k−1
j=1 nj+1:n . . . < t∑k

j=1 nj :n

}
.

It is to be noted that although the data representation in the above is given for full

sample data for SSLT, the different types of censoring schemes as been discussed before can

be applied in the experiment. An SSLT is called simple SSLT if k = 2 i.e. there are two

stress levels in the system.

There are different types of models assumptions used in SSLT experiment. The most

common and popular model is cumulative exposure model (CEM). The CEM was first pro-

posed by Seydyakin [41] and later studied by Bagdonavicius [3] and Nelson [38]. Under the

assumptions of CEM, the residual life of a unit at a stress level depends only on the cumula-

tive exposure that the unit has experienced, no matter how this exposure was accumulated.

Let us consider a k stress SSLT experiment as described before with cumulative distribution

function(CDF) of the units at i-th stress level being Fi(.). Suppose F (.) denotes the CDF of

the units under CEM. Then under the assumptions of CEM, F (.) is related to CDF under
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each stress level by the following set equations.

F (t) = Fi(t− hi−1), if τi−1 < t < τi, i = 1, 2, . . . , k, (1)

with τ0 = 0, τk = ∞, h0 = 0 and hi, for i = 1, 2, . . . , k − 1, is solution of the equation

Fi(τi − hi−1) = Fi+1(τi − hi).

In a reliability experiment, it is interesting to asses some specific risk factors in presence

of other risk factors. In statistical literature this called competing risk problem. In a typical

competing risk problem a unit may fail due to several causes. For example a working

computer can all of a sudden shuts down due to any one or more of the reasons viz. failure

of motherboard of the computer or the failure of central processing unit of the system or

failure of may be some different reasons. In a typical competing risk experiment, one observes

time of failure and the associated cause responsible for the failure of the units. Let δ be an

indicator variable showing the cause of failure of a unit. Then the data set is

data =
{

(z1:n, δ1), (z2:n, δ2), . . . , (zn:n, δn)}.

Here, zi:n denotes the failure time of i-th unit. Sometimes the exact cause of a failure may not

be known. Hence a suitable analytical treatment is required to take care in those cases. Cox

[18] suggested latent failure time models in which the risks are assumed to be independent to

each other. In this model, suppose n units are put in the experiment and X1, X2, . . . , Xp are

the random variables denoting the lifetimes of p competing risks responsible for the failure

of units. Then a unit fails as soon as one of the competing risks causes the unit fail. Several

works have been done under this assumption. Tsiatis [42] discussed the non identifiability

aspect in competing risk model. He showed that given a joint survivor density function of

different dependent causes, one can have independent causes having the same joint survivor

function. Thus from the data set consisting of failure time points and causes of failures, it

is not possible to identify whether the causes are independent or not.
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Several works have been done in different life testing models using Progressive Type-II

censoring scheme. One can see Balakrishnan and Aggarwala [5] for a book length reference

and an excellent review on Progressive censoring by Balakrishnan [4] and the references

therein of the developments on progressive Type-II censoring. Balakrishnan and Sandhu

[13] considered maximum likelihood estimation and best linear unbiased estimation of the

parameters in both one and two parameter exponential distribution for Progressive Type-II

censoring. They showed both the estimators are same after some bias adjustment. Some

of the other distributions used in Progressive Type-II censoring are logistic distribution

by Balakrishnan and Kannan [9], laplace distribution by Aggarwala and Balakrishnan [1],

half logistic distribution by Balakrishnan and Asgharzadeh [6], Gaussian distribution by

Balakrishnan et al. [10] etc. Balakrishnan et al. [11] considered extreme value distribution

in Progressive Type-II censoring. The MLEs of the parameters are not obtained in explicit

form and hence approximate maximum likelihood estimates are computed.

Step stress modeling has been extensively studied by different authors. Balakrishnan et

al. [16] and Balakrishnan et al. [12] considered simple SSLT with one parameter exponential

model under Type-I and Type-II censoring scheme respectively. They found MLEs of the

parameters and established exact conditional distributions of the parameters. Balakrishnan

and Xie [14], [15] considered the exact inference for a simple step stress model with Type-I

and Type-II Hybrid censoring. Later Balakrishnan and Xie [14] and Balakrishnan and Xie

[15] derived exact inferential results for SSLT with one parameter exponential distribution

under Type-I Hybrid and Type-II Hybrid censoring respectively. Mitra et al. [37] considered

simple step stress model for two parameter exponential distribution under Type-II censoring.

Gouno et al. [23] studied optimal choice of stress changing time points for both simple SSLT

and multiple SSLT case with one parameter exponential distributions. They considered the

mean life time to be a log linear function of stress levels. However there were some erroneous

expressions in that work which were corrected by Han et al. [25]. Xie et al. [43] derived
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exact distributions of MLEs of the parameters of exponential distribution under Progressive

Type-II censoring.

The competing risk modeling has been studied extensively in different distributions un-

der different types of censoring schemes as well as along with ALT modeling. One can see

Crowder [19], Crowder [20], David and Moeschberger [21] for book length references. Kundu

and Gupta [32] considered competing risk modeling with one parameter exponential distribu-

tion with Type-I Hybrid censoring scheme. They considered both frequentist and Bayesian

analysis of the data. Kundu et al. [34] and Kundu and Joarder [33] considered analysis

of Progressive and Progressive Hybrid Type-I censored competing risk, respectively for ex-

ponential distributions. Ashour and Abu-El-Azm [2] analyzed Progressive Hybrid Type-II

censored competing risk data with exponential distributions. They however did not establish

exact distributions of the MLEs of the parameters. They carried out Bayesian analysis using

LINEX loss function with gamma as prior distribution. Competing risk analysis for two

parameter exponential distribution in Type-II Hybrid censoring has been discussed by Mao

et al. [36]. Kundu and Basu [31] considered competing risk for incomplete data with expo-

nential as well as Weibull populations. Bhattacharya et al. [17] analyzed Hybrid Type-II

censored competing risk data with frequentist and Bayesian approaches with Weibull distri-

butions. Since MLEs of the unknown parameters were not obtained in explicit form they used

approximate maximum likelihood estimator to obtain MLEs in explicit form. Beta-Gamma

distribution and a log concave density were used as prior distributions for Bayesian analysis.

Pareek et al. [39] analyzed the competing risk data coming from two parameter Weibull

distributions under progressive censoring. They obtained some optimal censoring schemes

of the experiment design and proposed a sub optimal censoring scheme due to expensive

computations in the former case. Bayesian analysis of competing risk data from Weibull dis-

tributions under Progressive Type-II censoring by Kundu and Pradhan [35]. Klein and Basu

([28], [29], [30]) used the method of maximum likelihood to estimate the model parameters
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for independent exponential or Weibull distributions under different censoring schemes viz.

Type-I, Type-II, and progressively censored ALT observations. Han and Balakrishnan [24]

considered simple step stress modeling in Type-I censoring scheme under competing risk set

up with exponential distributions as the distribution of risk factors. Balakrishnan and Han

[8] also considered in the same model with Type-II censoring instead of Type-I censoring

scheme. In both the cases they established exact distributions of MLEs of the parameters.

Han and Kundu [26] considered step stress modeling for Type-I censoring with generalized

exponential risk factors. Ganguly and Kundu [22] analyzed competing risk in simple step

stress model where the stress changing time is random with Type-II censoring. They estab-

lished exact distributions of the MLEs of the parameters and studied some optimal tests for

the choice of experiment design. In this article we have considered simple step stress mod-

eling under progressive Type-II censoring in presence of competing risks. We have assumed

CEM in the two stress levels. In first stress level the two distributions of two risk factors are

assumed to be exponential distributions with mean θ11 and θ21, respectively whereas in the

second stress level the corresponding distributional assumptions become exponential with

corresponding means θ12 and θ22, respectively. In Section 2 we describe model assumption

and MLEs of the parameters, whereas Exact distribution of MLEs are derived in Section

3. Different types of confidence intervals viz. exact, bootstrap confidence intervals are con-

structed in Section 4. Further we carry out the Bayesian analysis of the data in Section 5.

An extensive simulation study is reported along with a particular data set for data analysis

in Section 6. We conclude the chapter in Section 7. All the proofs of the results are given in

Appendix 7.
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2 Model assumption & MLEs

Before we proceed for model description let us define the integers n,m(< n) and a set of non

negative integers (R1, . . . , Rm) such that m +
∑m

i=1Ri = n. Consider an experiment starts

with n units under first stress level. The environment of the experiment changes to a second

stressed level at a fixed time point τ . For i ∈ {1, 2, . . . ,m}, Ri units are removed from the

remaining (n− i−R1 − . . .−Ri−1) units at the failure time of i-th unit of the experiment.

The experiment stops running as soon as the m-th unit fails. At each stress level there are

two causes of failures. For i, j = 1, 2, let Xij denote the random variable associated with i-th

risk in j-th stress level of the experiment. Further it is assumed that the causes of failures

are following Cox’s latent failure time model and stress level for each competing risk factor

changes under the assumption of CEM. One would observe the failure time points and the

cause associated with each failure. At first stress level failure time points will be observed

in the form of random variable Z1 = min{X11, X21} and Z2 = min{X12, X22} at the second

stress level. We define a random variable Z as,

Z =

{
Z1, at first stress level

Z2, at second stress level

Thus Z is the random variable denoting the failure time of the units. Let us denote by D1

and D2 the observed data sets in first and second stress level, respectively. Thus if D is the

random variable denoting the number of failures in first stress level then D1 and D2 are of

the following form,

D1 = {(z1:m:n, R1, δ1,1), (z2:m:n, R2, δ2,1), . . . , (zd:m:n, Rd, δd,1)}

D2 = {(zd+1:m:n, Rd+1, δd+1,2), (zd+2:m:n, Rd+2, δd+2,2), . . . , (zm:m:n, Rm, δm,2)}

where,

d : is the number of failures observed in the first stress level.

δi,j =

{
1, if i -th failure comes from first cause in j -th stress level,

0, if i -th failure comes from second cause in j -th stress level.
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Clearly the complete data of the experiment is {D1,D2}.

It is to be noted that, for zi:m:n < τ , the likelihood contribution at the observation (zi:m:n, δi,1 =

1) is obtained as,

L(θ11, θ21, θ12, θ22|(zi:m:n, δi,1 = 1)) =
1

θ11
e
− 1
θ11

zi:m:n(1+Ri) e
− 1
θ21

zi:m:n(1+Ri)

=
1

θ11
e
−( 1

θ11
+ 1
θ21

)zi:m:n(1+Ri). (2)

Similarly, the likelihood contribution at the observation (zi:m:n, δi,1 = 0) is obtained as,

L(θ11, θ21, θ12, θ22|(zi:m:n, δi,1 = 0)) =
1

θ21
e
−( 1

θ11
+ 1
θ21

)zi:m:n(1+Ri). (3)

On the other hand, for τ < zi:m:n, the likelihood contribution at the observation (zi:m:n, δi,2 =

1) is obtained as,

L(θ11, θ21, θ12, θ22|(zi:m:n, δi,2 = 1)) =
1

θ12
e
− 1
θ12

(zi:m:n−τ)− τ
θ11 e

− 1
θ22

(zi:m:n−τ)− τ
θ21

=
1

θ12
e
−( 1

θ12
+ 1
θ22

)(zi:m:n−τ)−τ( 1
θ11

+ 1
θ21

)
. (4)

Similarly, for τ < zi:m:n, the likelihood contribution at the observation (zi:m:n, δi,2 = 0) is

obtained as,

L(θ11, θ21, θ12, θ22|(zi:m:n, δi,2 = 1)) =
1

θ22
e
−( 1

θ12
+ 1
θ22

)(zi:m:n−τ)−τ( 1
θ11

+ 1
θ21

)
. (5)

Based on the data, let us denote by,

w1 =
d∑
i=1

zi:m:n

(
1 +Ri

)
+ τ
[(
m− d

)
+

m∑
i=d+1

Ri

]
and w2 =

m∑
i=d+1

(zi:m:n − τ)(1 +Ri).

For i, j = 1, 2, suppose Dij is the random variable denoting the number of failures occurring

due to cause i in the j -th stress level. The likelihood function from the expressions (2) to

(5) and based on the data, can be written as,

L(θ11, θ21, θ12, θ22|data) =c
( 1

θ11

)d11( 1

θ21

)d−d11( 1

θ12

)d12( 1

θ22

)m−d−d12
e
−w1
θ.1
−w2
θ.2 , (6)
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where, c is the normalizing constant, independent of the parameters and for s = 1, 2,
1

θ.s
=

1

θ1s
+

1

θ2s
. Derivation of c is supplied in Appendix 7. For i, j = 1, 2, MLEs of θij are obtained

by maximizing the likelihood (or equivalently the log likelihood) function. Note that MLE

of θij exists only if Dij > 0 and it is given by,

θ̂ij =
Wj

Dij

, i, j = 1, 2. (7)

3 Conditional distribution of MLEs

In this section, we derive conditional distribution of the MLEs of the parameters. Let us

define an event D∗ = {D11 > 0, D21 > 0, D12 > 0, D22 > 0}. Note that MLEs of all the

parameters exist only if the event D∗ occurs. For s = 1, 2, the distribution functions of θ̂s1

and θ̂s2 are given below.

Theorem 1. The distribution function of θ̂s1 is given by,

Fθ̂s1|D∗ (x) =P (θ̂s1 ≤ x|D∗)

=
c

P (D∗)

m−2∑
d=2

d−1∑
i=1

[(
d

i

)( θs1
θ11 + θ21

)d−i(
1− θs1

θ11 + θ21

)i[
1−

( θ22
θ12 + θ22

)m−d
−

( θ12
θ12 + θ22

)m−d] 1∏m−d
j=1

∑m−d
p=j (1 +Rp)

×

d∑
l=0

[ (−1)le
− τ
θ.1

[
l+m−d+

∑m
j=d−l+1Rj

]
[∏l

j=1

∑d−l+j
p=d−l+1(1 +Rp)

][∏d−l
j=1

∑d−l
p=j(1 +Rp)

]×
FG

(
x;
τ

i

[
l +m− d+

m∑
j=d−l+1

Rj

]
, d,

i

θ.1

)]]
. (8)

Proof. See Appendix 7.

Corollary 1.1. The probability density function of θ̂s1 is given by,

fθ̂s1|D∗ (x) =
c

P (D∗)

m−2∑
d=2

d−1∑
i=1

[(
d

i

)( θs1
θ11 + θ21

)d−i(
1− θs1

θ11 + θ21

)i[
1−

( θ22
θ12 + θ22

)m−d
−
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( θ12
θ12 + θ22

)m−d] 1∏m−d
j=1

∑m−d
p=j (1 +Rp)

×

d∑
l=0

[ (−1)le
− τ
θ.1

[
l+m−d+

∑m
j=d−l+1Rj

]
[∏l

j=1

∑d−l+j
p=d−l+1(1 +Rp)

][∏d−l
j=1

∑d−l
p=j(1 +Rp)

]×
fG

(
x;
τ

i

[
l +m− d+

m∑
j=d−l+1

Rj

]
, d,

i

θ.1

)]]
. (9)

Theorem 2. For s = 1, 2, the distribution function of θ̂s2 is given by,

Fθ̂s2|D∗(x) =P (θ̂s2 ≤ x|D∗)

=
c

P (D∗)

m−2∑
d=2

m−d−1∑
k=1

[[
1−

( θ21
θ11 + θ21

)d
−
( θ11
θ11 + θ21

)d](m− d
k

)
×

(
1− θs2

θ12 + θ22

)k( θs2
θ12 + θ22

)m−d−k 1∏m−d
j=1

∑m−d
p=j (1 +Rp)

×

d∑
l=0

(−1)le
− τ
θ.1

[
l+m−d+

∑m
i=d−l+1Ri

]
[∏l

j=1

∑d−l+j
p=d−l+1(1 +Rp)

][∏d−l
j=1

∑d−l
p=j(1 +Rp)

]FG(x; 0,m− d, k
θ.2

)]
.

(10)

Proof. See Appendix 7.

Corollary 2.1. For s = 1, 2, the probability density function of θ̂s2 is given by,

fθ̂s2|D∗(x) =
c

P (D∗)

m−2∑
d=2

m−d−1∑
k=1

[[
1−

( θ21
θ11 + θ21

)d
−
( θ11
θ11 + θ21

)d](m− d
k

)
×

(
1− θs2

θ12 + θ22

)k( θs2
θ12 + θ22

)m−d−k 1∏m−d
j=1

∑m−d
p=j (1 +Rp)

×

d∑
l=0

(−1)le
− τ
θ.1

[
l+m−d+

∑m
i=d−l+1Ri

]
[∏l

j=1

∑d−l+j
p=d−l+1(1 +Rp)

][∏d−l
j=1

∑d−l
p=j(1 +Rp)

]fG(x; 0,m− d, k
θ.2

)]
.

(11)

4 Confidence intervals

In this section we construct exact and bootstrap confidence intervals (CI) of the parameters

of interest. They are discussed below.
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4.1 Exact confidence interval

For any α ∈ (0, 1), if θLij and θUij denote 100(1−α)% lower and upper confidence limits of θij

then they are obtained by solving for θij the following two equations:

Fθ̂ij |D∗(θ̂
obs
ij ) = 1− α

2
, (12)

Fθ̂ij |D∗(θ̂
obs
ij ) =

α

2
. (13)

Here θ̂obsij denotes the observed MLE of θij. Note that Equations (12) and (13) involve other

parameters θi′j′ ; (i
′
j
′
) 6= (ij), all of them are replaced by their observed values of MLEs

respectively. It is to be noted solutions of the above equations exist if the following two

properties hold true:

Property-1:

For any x > 0 and i, j = 1, 2, the function Fθ̂ij |D∗(x) is a monotonically decreasing function

of θij.

Property-2:

For any x > 0, lim
θij→0

Fθ̂ij |D∗(x) = 1 and lim
θij→∞

Fθ̂ij |D∗(x) = 0.

Since we could not establish Property-1 and Property-2 analytically, a graphical display of

the functions (as shown in for data analysis) reveals that these two properties hold true and

hence can be used to construct exact confidence interval of the parameters. Equations (12)

and (13) are non linear equations and one needs to solve them by non linear solvers viz.

bisection, Newton Rapshon method etc.

4.2 Bootstrap confidence interval

The other confidence interval viz. percentile bootstrap confidence intervals can be con-

structed using the following algorithm.
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Algorithm 1:

Step-1: Given the values of n,m,R1, R2, . . . , Rm and T , generate sample and estimate

θ̂11, θ̂21, θ̂12, θ̂22 from equation (7).

Step-2: Using the same values of n,m,R1, R2, . . . , Rm, T , generate sample with θ̂11, θ̂21, θ̂12, θ̂22

obtained in Step-1 and estimate values of the parameters say,θ̂∗11, θ̂
∗
21, θ̂

∗
12, θ̂

∗
22 from equation

(7).

Step-3: Repeat Step-2 a large number of times say, M times and obtain θ̂ij, M times.

Arrange them in an increasing order to obtain θ̂
∗(1)
ij < θ̂

∗(2)
ij < . . . < θ̂

∗(M)
ij .

Step-4: For α ∈ (0, 1), a 100(1− α)% percentile bootstrap confidence interval for θij is then

given by,
(
θ̂
∗([M α

2
])

ij , θ̂
∗([M(1−α

2
)]

ij

)
, where [x] denotes the largest integer less than or equal to x.

5 Bayesian Analysis

In this section we carry out Bayesian analysis of the data coming from the model under

consideration. We obtain Bayes estimates of the parameters and the associated credible

intervals under square error loss functions. Before we proceed further, let us denote Beta-

Gamma distribution with parameters b0 > 0 , a0 > 0, a1 > 0, a2 > 0 by BG(b0, a0, a1, a2)

with the following density function.

f(x, y) = ba00
Γ(a1 + a2)

Γ(a0)Γ(a1)Γ(a2)
eb0(x+y)xa1−1ya2−1(x+ y)a0−a1−a2 , x > 0, y > 0. (14)

For further details on Beta-Gamma distribution, one may see Penna and Gupta [40]. We

make the re-parametrization of the parameters as λij = 1
θij

, for i, j = 1, 2. Further, we

assume that the parameters of the model have the following prior distributions.

For b01 > 0, a01 > 0, a11 > 0, a21 > 0, b02 > 0, a02 > 0, a12 > 0, a22 > 0,
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(λ11, λ21) ∼ BG(b01, a01, a11, a21) and (λ12, λ22) ∼ BG(b02, a02, a12, a22) and (λ11, λ21) are

independent of (λ12, λ22).

5.1 Posterior distribution

The posterior distribution of the re-parametrized parameters (λ11, λ21, λ12, λ22) turn out to

be in the following form.

π(λ11, λ21, λ12, λ22|data) ∝ λd11+a11−111 λd−d11+a21−121 e−(b01+w1)(λ11+λ21)λd12+a12−112 λm−d−d12+a22−122

e−(b02+w2)(λ12+λ22)(λ11 + λ21)
a01−a11−a21(λ12 + λ22)

a02−a12−a22 , λ11 > 0, λ21 > 0, λ12 > 0, λ22 > 0
(15)

Under square error loss function, the Bayes estimators of θij are obtained as, θ̂ij = for

i, j = 1, 2.

5.2 Credible interval (CRI)

We now consider construction of symmetric and highest posterior density (HPD) credible

intervals of the parameters. Note that, from 5.1, the joint posterior distribution of λ11, λ21

is obtained as, (λ11, λ21|data) ∼ BG(b01 + w1, a01 + d, a11 + d11, a21 + d− d11) and the joint

posterior distribution of λ12, λ22 is obtained as, (λ12, λ22|data) ∼ BG(b02 + w2, a02 + m −

d, a12 + d12, a22 +m− d− d12). We need the following lemma, to proceed further.

lemma 1. Two random variables X and Y follow BG(b0, a0, a1, a2) if and only if, X
X+Y

∼

Beta(a1, a2) and X + Y ∼ Gamma(a0, b0).

Proof. The proof is straight forward and hence is not provided.

We now provide an algorithm to construct 100(1 − α)% symmetric and HPD credible

intervals of θ11 and θ21. Similar methods can be used for θ12 and θ22 also.
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Algorithm 2:

Step-1: Generate λ11+λ21 from Gamma(a01+d, b01+w1). Generate λ11
λ11+λ21

from Beta(a11+

d11, a21 + d− d11).

Step-2: Obtain λ11 and λ21 from Step-1. Obtain θ11 = 1
λ11

and θ21 = 1
λ21

.

Step-3: Repeat Step-1 and Step-2 quite a large number of times say, M , to obtain M number

of θ11 and θ21. Arrange M values of θ11 and θ21 each in increasing order as, θ111 ≤ θ211 . . . ≤ θM11

and θ121 ≤ θ221 . . . ≤ θM21 respectively.

Step-4: The 100(1 − α)% symmetric and HPD credible intervals of θ11 are obtained as

(θ
[M α

2
]

11 , θ
[M(1−α

2
)]

11 ) and (θj
∗

11, θ
j∗+[M(1−α)]
11 ), respectively, where, j∗ ∈ {1, 2, . . . , [Mα]} is an in-

teger such that, θ
j∗+[M(1−α)]
11 − θj

∗

11 ≤ θ
j+[M(1−α)]
11 − θj11 for ∀j = 1, 2, . . . , [Mα] and [x] is the

largest integer not exceeding x.

6 Simulation results

In this section we carry out simulation study of our model. We compute exact and bootstrap

confidence intervals as well as symmetric and HPD credible intervals of the parameters

of the interest. They are computed at 5% and 1% levels of significance. We have taken

θ11 = 1.3, θ21 = 1.1, θ12 = 0.7, θ22 = 0.5 as our designing parameters. For Bayesian analysis

the hyper parameters are taken as b01 = b02 = 0, a01 = a02 = 2, a11 = a21 = a12 = a22 =

1. These values are chosen such that, they match with the corresponding MLEs of the

parameters. Thus a comparison study can be made between the performance of frequentest

and Bayesian analysis of data in our model. Different values of n and τ are considered to

check for repeating performances of the proposed model under different censoring schemes.

For our study we have considered three different censoring schemes and they are described
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as:- Scheme-1: R1 = n−m,R2 = . . . = Rm = 0, Scheme-2: R1 = . . . = Rm/2−1 = 0, Rm/2 =

n −m,Rm/2+1 = . . . = Rm = 0, Scheme-3: R1 = (n −m)/2, R2 = . . . = Rm−1 = 0, Rm =

(n−m)/2. In all these cases, m+
∑m

i=1Ri = n.

Table 1: Classical results for θ11 with θ11 = 1.3, θ21 = 1.1, θ12 = 0.7, θ22 = 0.5

n m τ Scheme Bias MSE Exact CI Bootstrap CI
95% 99% 95% 99%

35 30 0.5 I 0.133 0.332 2.839 (96.02) 4.255 (99.40) 3.554 (94.20) 5.851 (98.32)
35 30 0.6 I 0.126 0.297 2.534 (96.37) 3.879 (99.35) 3.149 (94.75) 5.324 (98.62)
35 30 0.7 I 0.125 0.283 2.349 (95.57) 3.504 (99.57) 2.982 (93.77) 4.895 (98.12)
40 34 0.5 I 0.130 0.314 2.563 (95.92) 3.786 (99.47) 3.151 (93.95) 5.229 (98.40)
40 34 0.6 I 0.123 0.278 2.286 (95.42) 3.380 (99.45) 2.806 (94.05) 4.703 (98.30)
40 34 0.7 I 0.106 0.252 2.099 (94.82) 3.076 (99.25) 2.513 (94.42) 4.174 (98.50)
35 30 0.5 II 0.134 0.321 2.626 (95.90) 3.884 (99.42) 3.270 (94.17) 5.463 (98.27)
35 30 0.6 II 0.119 0.291 2.381 (95.50) 3.584 (99.40) 2.896 (94.62) 4.854 (98.55)
35 30 0.7 II 0.114 0.267 2.228 (95.20) 3.334 (99.35) 2.669 (94.75) 4.481 (98.70)
40 34 0.5 II 0.111 0.267 2.280 (95.42) 3.400 (99.37) 2.943 (93.40) 4.902 (98.27)
40 34 0.6 II 0.107 0.249 2.122 (95.02) 3.078 (99.47) 2.559 (94.62) 4.246 (98.45)
40 34 0.7 II 0.101 0.255 2.048 (94.92) 2.992 (99.02) 2.310 (94.80) 3.747 (98.35)
35 30 0.5 III 0.135 0.319 2.614 (95.67) 3.971 (99.40) 3.185 (95.05) 5.379 (98.67)
35 30 0.6 III 0.119 0.273 2.313 (95.45) 3.507 (99.40) 2.840 (94.35) 4.801 (98.67)
35 30 0.7 III 0.111 0.274 2.193 (95.07) 3.269 (99.27) 2.637 (94.30) 4.423 (98.67)
40 34 0.5 III 0.107 0.273 2.296 (95.62) 3.403 (99.57) 2.695 (94.25) 4.518 (98.70)
40 34 0.6 III 0.107 0.245 2.104 (95.70) 3.108 (99.45) 2.449 (94.15) 4.035 (98.45)
40 34 0.7 III 0.098 0.244 1.979 (94.80) 2.879 (99.30) 2.265 (94.25) 3.699 (98.90)
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Table 2: Classical results for θ21 with θ11 = 1.3, θ21 = 1.1, θ12 = 0.7, θ22 = 0.5

n m τ Scheme Bias MSE Exact CI Bootstrap CI
95% 99% 95% 99%

35 30 0.5 I 0.106 0.222 2.056 (94.82) 3.092 (99.47) 2.562 (93.55) 4.280 (98.37)
35 30 0.6 I 0.097 0.197 1.857 (94.82) 2.786 (99.47) 2.206 (94.12) 3.619 (98.95)
35 30 0.7 I 0.093 0.180 1.729 (94.57) 2.523 (99.05) 1.921 (95.25) 3.288 (98.67)
40 34 0.5 I 0.089 0.183 1.814 (94.75) 2.692 (99.25) 2.149 (94.55) 3.638 (98.37)
40 34 0.6 I 0.083 0.174 1.663 (94.92) 2.413 (99.35) 1.906 (94.65) 2.975 (98.92)
40 34 0.7 I 0.075 0.150 1.547 (95.07) 2.244 (99.10) 1.742 (94.70) 2.690 (98.90)
35 30 0.5 II 0.086 0.196 1.864 (94.65) 2.831 (99.32) 2.178 (94.70) 3.692 (98.45)
35 30 0.6 II 0.082 0.171 1.727 (95.17) 2.559 (99.32) 1.941 (94.27) 3.152 (98.82)
35 30 0.7 II 0.079 0.164 1.646 (94.70) 2.391 (99.37) 1.803 (94.90) 2.887 (99.20)
40 34 0.5 II 0.076 0.165 1.670 (95.12) 2.462 (99.30) 1.895 (94.27) 3.113 (98.67)
40 34 0.6 II 0.069 0.141 1.543 (95.15) 2.270 (99.10) 1.709 (94.60) 2.686 (98.77)
40 34 0.7 II 0.067 0.134 1.473 (94.20) 2.145 (98.72) 1.607 (95.22) 2.443 (98.82)
35 30 0.5 III 0.092 0.195 1.873 (94.82) 2.790 (99.37) 2.285 (94.40) 3.730 (98.85)
35 30 0.6 III 0.087 0.173 1.722 (94.95) 2.508 (99.22) 2.002 (94.52) 3.318 (98.70)
35 30 0.7 III 0.083 0.145 1.609 (95.37) 2.348 (99.20) 1.815 (95.50) 2.920 (98.50)
40 34 0.5 III 0.086 0.179 1.738 (95.67) 2.523 (99.47) 1.961 (95.02) 3.232 (98.70)
40 34 0.6 III 0.081 0.154 1.577 (94.25) 2.249 (98.82) 1.780 (94.55) 2.794 (98.77)
40 34 0.7 III 0.078 0.130 1.490 (95.10) 2.124 (98.97) 1.599 (95.52) 2.507 (98.75)

Table 3: Classical results for θ12 with θ11 = 1.3, θ21 = 1.1, θ12 = 0.7, θ22 = 0.5

n m τ Scheme Bias MSE Exact CI Bootstrap CI
95% 99% 95% 99%

35 30 0.5 I 0.030 0.094 2.318 (97.70) 3.854 (99.77) 2.078 (94.95) 3.263 (99.10)
35 30 0.6 I 0.031 0.092 2.755 (97.80) 4.352 (99.55) 2.187 (95.35) 3.352 (99.25)
35 30 0.7 I 0.040 0.079 3.022 (98.25) 4.833 (99.65) 2.232 (95.17) 3.339 (99.15)
40 34 0.5 I 0.024 0.094 2.107 (97.42) 3.461 (99.77) 1.938 (94.95) 3.118 (99.02)
40 34 0.6 I 0.027 0.098 2.503 (97.40) 4.069 (99.67) 2.090 (95.82) 3.272 (99.32)
40 34 0.7 I 0.033 0.094 2.943 (97.47) 4.627 (99.75) 2.212 (95.75) 3.376 (99.27)
35 30 0.5 II 0.039 0.096 2.709 (97.35) 4.265 (99.70) 2.178 (95.05) 3.353 (98.92)
35 30 0.6 II 0.046 0.090 3.041 (97.62) 4.794 (99.65) 2.278 (95.97) 3.411 (99.25)
35 30 0.7 II 0.050 0.084 3.441 (97.52) 5.115 (99.67) 2.248 (95.37) 3.314 (98.87)
40 34 0.5 II 0.031 0.102 2.384 (96.55) 4.003 (99.75) 2.117 (95.07) 3.309 (98.82)
40 34 0.6 II 0.039 0.094 2.774 (97.12) 4.571 (99.70) 2.187 (95.95) 3.334 (99.32)
40 34 0.7 II 0.047 0.085 3.256 (97.22) 4.973 (99.57) 2.235 (95.42) 3.349 (99.07)
35 30 0.5 III 0.041 0.092 2.742 (97.75) 4.282 (99.65) 2.163 (95.10) 3.338 (99.32)
35 30 0.6 III 0.046 0.081 3.177 (98.37) 4.852 (99.72) 2.252 (95.70) 3.387 (99.30)
35 30 0.7 III 0.053 0.075 3.658 (99.22) 5.353 (99.72) 2.204 (95.37) 3.253 (98.92)
40 34 0.5 III 0.040 0.096 2.379 (97.62) 3.852 (99.80) 2.089 (95.37) 3.294 (99.02)
40 34 0.6 III 0.041 0.099 2.977 (97.55) 4.557 (99.75) 2.185 (95.37) 3.334 (99.27)
40 34 0.7 III 0.049 0.084 3.260 (97.77) 5.141 (99.72) 2.232 (95.67) 3.332 (98.97)
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Table 4: Classical results for θ22 with θ11 = 1.3, θ21 = 1.1, θ12 = 0.7, θ22 = 0.5

n m τ Scheme Bias MSE Exact CI Bootstrap CI
95% 99% 95% 99%

35 30 0.5 I 0.027 0.044 1.204 (96.32) 2.117 (99.50) 1.103 (94.67) 1.798 (98.82)
35 30 0.6 I 0.034 0.052 1.558 (97.00) 2.702 (99.67) 1.268 (95.35) 2.038 (98.90)
35 30 0.7 I 0.037 0.051 1.863 (97.22) 3.129 (99.72) 1.387 (96.10) 2.207 (99.20)
40 34 0.5 I 0.024 0.039 1.038 (95.90) 1.761 (99.52) 0.999 (94.72) 1.615 (98.77)
40 34 0.6 I 0.029 0.046 1.319 (96.67) 2.263 (99.65) 1.157 (94.47) 1.875 (98.85)
40 34 0.7 I 0.031 0.051 1.552 (96.07) 2.764 (99.72) 1.296 (95.47) 2.074 (99.02)
35 30 0.5 II 0.030 0.053 1.427 (96.62) 2.443 (99.62) 1.207 (95.42) 1.946 (98.85)
35 30 0.6 II 0.032 0.052 1.725 (96.67) 2.911 (99.62) 1.339 (95.15) 2.132 (99.12)
35 30 0.7 II 0.039 0.054 2.082 (97.12) 3.519 (99.75) 1.484 (95.72) 2.329 (99.02)
40 34 0.5 II 0.025 0.045 1.226 (96.45) 2.062 (99.30) 1.089 (95.10) 1.774 (98.60)
40 34 0.6 II 0.028 0.049 1.523 (96.67) 2.706 (99.70) 1.258 (95.47) 2.033 (98.92)
40 34 0.7 II 0.031 0.056 1.947 (96.70) 3.294 (99.62) 1.384 (95.70) 2.197 (99.22)
35 30 0.5 III 0.027 0.048 1.525 (96.22) 2.619 (99.75) 1.219 (95.22) 1.975 (98.92)
35 30 0.6 III 0.030 0.052 1.928 (96.77) 3.390 (99.60) 1.392 (95.90) 2.215 (99.35)
35 30 0.7 III 0.033 0.056 2.369 (97.02) 3.943 (99.87) 1.536 (96.47) 2.391 (99.32)
40 34 0.5 III 0.025 0.047 1.255 (96.50) 2.135 (99.52) 1.098 (94.95) 1.787 (98.90)
40 34 0.6 III 0.030 0.053 1.603 (96.45) 2.937 (99.62) 1.277 (95.55) 2.060 (98.87)
40 34 0.7 III 0.032 0.051 2.053 (97.17) 3.449 (99.75) 1.440 (95.42) 2.274 (99.07)

Table 5: Bayesian results for θ11 with θ11 = 1.3, θ21 = 1.1, θ12 = 0.7, θ22 = 0.5

n m τ Scheme Symmetric CRI HPD CRI
95% 99% 95% 99%

35 30 0.5 I 2.460 (94.70) 3.872 (99.12) 2.157 (93.35) 3.391 (98.60)
35 30 0.6 I 2.281 (94.40) 3.522 (98.82) 2.028 (93.52) 3.121 (98.50)
35 30 0.7 I 2.112 (94.92) 3.164 (98.80) 1.905 (93.62) 2.859 (98.62)
40 34 0.5 I 2.262 (94.57) 3.482 (98.92) 2.014 (93.67) 3.092 (98.82)
40 34 0.6 I 1.968 (94.77) 2.914 (98.90) 1.787 (93.32) 2.651 (98.47)
40 34 0.7 I 1.865 (95.45) 2.736 (98.92) 1.706 (93.92) 2.507 (98.52)
35 30 0.5 II 2.256 (94.62) 3.473 (98.92) 2.006 (93.30) 3.088 (98.55)
35 30 0.6 II 2.095 (94.75) 3.137 (98.92) 1.889 (93.67) 2.836 (98.42)
35 30 0.7 II 1.979 (94.95) 2.925 (99.02) 1.799 (94.45) 2.663 (98.67)
40 34 0.5 II 1.999 (95.22) 2.969 (99.07) 1.812 (94.02) 2.696 (98.82)
40 34 0.6 II 1.931 (94.00) 2.841 (98.67) 1.762 (93.80) 2.596 (98.20)
40 34 0.7 II 1.787 (94.82) 2.600 (98.65) 1.644 (94.05) 2.394 (98.30)
35 30 0.5 III 2.261 (94.35) 3.475 (98.62) 2.009 (92.95) 3.091 (98.10)
35 30 0.6 III 2.042 (94.80) 3.065 (99.12) 1.842 (93.17) 2.766 (98.77)
35 30 0.7 III 1.900 (95.55) 2.797 (99.22) 1.733 (94.02) 2.554 (98.82)
40 34 0.5 III 2.087 (95.02) 3.121 (98.92) 1.884 (94.35) 2.821 (98.57)
40 34 0.6 III 1.916 (94.72) 2.819 (99.00) 1.749 (93.80) 2.575 (98.77)
40 34 0.7 III 1.820 (95.15) 2.646 (98.92) 1.674 (94.60) 2.437 (98.85)
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Table 6: Bayesian results for θ21 with θ11 = 1.3, θ21 = 1.1, θ12 = 0.7, θ22 = 0.5

n m τ Scheme Symmetric CRI HPD CRI
95% 99% 95% 99%

35 30 0.5 I 1.800 (94.70) 2.711 (99.15) 1.620 (93.67) 2.440 (98.60)
35 30 0.6 I 1.630 (94.67) 2.399 (98.90) 1.486 (93.67) 2.191 (98.45)
35 30 0.7 I 1.508 (94.90) 2.192 (99.15) 1.387 (93.67) 2.019 (98.77)
40 34 0.5 I 1.597 (93.52) 2.357 (99.05) 1.347 (91.42) 2.156 (98.40)
40 34 0.6 I 1.510 (94.00) 2.192 (98.82) 1.391 (93.67) 2.021 (98.25)
40 34 0.7 I 1.404 (94.47) 2.013 (98.67) 1.304 (93.77) 1.872 (98.30)
35 30 0.5 II 1.627 (94.37) 2.397 (99.00) 1.481 (93.10) 2.187 (98.60)
35 30 0.6 II 1.544 (94.72) 2.252 (99.00) 1.418 (93.57) 2.070 (98.60)
35 30 0.7 II 1.472 (95.27) 2.126 (99.00) 1.361 (94.47) 1.968 (98.87)
40 34 0.5 II 1.514 (95.32) 2.199 (99.07) 1.394 (94.60) 2.026 (98.80)
40 34 0.6 II 1.402 (95.27) 2.013 (98.97) 1.302 (94.10) 1.870 (98.82)
40 34 0.7 II 1.329 (94.20) 1.893 (98.70) 1.240 (93.37) 1.769 (98.15)
35 30 0.5 III 1.643 (93.82) 2.437 (98.47) 1.492 (92.57) 2.215 (98.22)
35 30 0.6 III 1.522 (94.55) 2.219 (98.72) 1.398 (93.67) 2.041 (98.30)
35 30 0.7 III 1.424 (96.02) 2.050 (99.35) 1.318 (94.70) 1.900 (98.92)
40 34 0.5 III 1.517 (95.20) 2.205 (98.90) 1.396 (93.90) 2.030 (98.62)
40 34 0.6 III 1.419 (94.85) 2.039 (98.95) 1.316 (94.45) 1.893 (98.77)
40 34 0.7 III 1.346 (95.02) 1.916 (99.05) 1.256 (94.87) 1.790 (98.95)

Table 7: Bayesian results for θ12 with θ11 = 1.3, θ21 = 1.1, θ12 = 0.7, θ22 = 0.5

n m τ Scheme Symmetric CRI HPD CRI
95% 99% 95% 99%

35 30 0.5 I 1.711 (93.52) 2.967 (98.65) 1.422 (91.10) 2.459 (97.70)
35 30 0.6 I 1.921 (93.77) 3.512 (98.62) 1.552 (91.05) 2.829 (97.92)
35 30 0.7 I 2.186 (93.45) 4.212 (98.60) 1.717 (90.65) 3.300 (97.55)
40 34 0.5 I 1.597 (93.52) 2.696 (98.42) 1.347 (91.42) 2.272 (97.47)
40 34 0.6 I 1.814 (94.00) 3.216 (98.72) 1.490 (91.45) 2.636 (97.90)
40 34 0.7 I 2.045 (93.92) 3.828 (98.70) 1.634 (91.02) 3.050 (97.70)
35 30 0.5 II 1.871 (93.20) 3.361 (98.67) 1.524 (90.67) 2.732 (97.75)
35 30 0.6 II 2.130 (93.87) 4.047 (98.57) 1.686 (90.20) 3.195 (97.42)
35 30 0.7 II 2.246 (93.42) 4.421 (98.17) 1.743 (89.65) 3.428 (96.80)
40 34 0.5 II 1.728 (94.52) 3.010 (98.82) 1.434 (92.10) 2.488 (98.20)
40 34 0.6 II 2.000 (93.12) 3.714 (98.15) 1.605 (90.57) 2.960 (97.30)
40 34 0.7 II 2.163 (93.20) 4.157 (98.25) 1.701 (89.52) 3.265 (96.90)
35 30 0.5 III 2.084 (94.82) 3.800 (98.52) 1.685 (93.42) 3.067 (97.85)
35 30 0.6 III 2.390 (94.62) 4.613 (98.62) 1.871 (91.85) 3.610 (98.18)
35 30 0.7 III 2.666 (94.27) 5.448 (98.95) 2.029 (90.77) 4.144 (98.02)
40 34 0.5 III 1.710 (94.07) 2.996 (98.22) 1.416 (91.25) 2.469 (97.65)
40 34 0.6 III 1.974 (93.50) 3.661 (98.32) 1.582 (90.07) 2.928 (97.40)
40 34 0.7 III 2.291 (93.55) 4.519 (98.77) 1.777 (89.45) 3.494 (98.02)
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Table 8: Bayesian results for θ22 with θ11 = 1.3, θ21 = 1.1, θ12 = 0.7, θ22 = 0.5

n m τ Scheme Symmetric CRI HPD CRI
95% 99% 95% 99%

35 30 0.5 I 0.877 (93.37) 1.364 (98.35) 0.774 (91.37) 1.203 (97.67)
35 30 0.6 I 0.982 (94.30) 1.590 (98.60) 0.847 (92.12) 1.370 (97.85)
35 30 0.7 I 1.149 (93.85) 1.963 (98.65) 0.961 (91.27) 1.642 (97.77)
40 34 0.5 I 0.794 (93.60) 1.202 (98.75) 0.712 (91.40) 1.078 (98.12)
40 34 0.6 I 0.912 (93.52) 1.445 (98.70) 0.798 (92.07) 1.262 (98.00)
40 34 0.7 I 1.059 (93.37) 1.755 (98.52) 0.901 (90.85) 1.492 (97.55)
35 30 0.5 II 0.966 (93.70) 1.555 (98.65) 0.837 (91.57) 1.344 (98.02)
35 30 0.6 II 1.149 (93.67) 1.973 (98.70) 0.961 (90.92) 1.646 (97.72)
35 30 0.7 II 1.282 (93.97) 2.285 (98.55) 1.051 (90.25) 1.864 (97.78)
40 34 0.5 II 0.869 (93.92) 1.346 (98.67) 0.767 (91.82) 1.190 (98.07)
40 34 0.6 II 1.010 (94.05) 1.650 (98.72) 0.867 (91.35) 1.413 (98.00)
40 34 0.7 II 1.178 (93.85) 2.026 (98.75) 0.983 (91.42) 1.688 (98.05)
35 30 0.5 III 1.083 (93.67) 1.764 (98.32) 0.931 (92.87) 1.516 (98.20)
35 30 0.6 III 1.277 (94.62) 2.216 (98.75) 1.062 (93.07) 1.837 (98.27)
35 30 0.7 III 1.558 (94.87) 2.918 (98.85) 1.244 (93.42) 2.319 (98.57)
40 34 0.5 III 0.900 (94.17) 1.418 (98.82) 0.790 (92.02) 1.242 (98.10)
40 34 0.6 III 1.040 (94.30) 1.724 (98.62) 0.886 (90.72) 1.466 (97.82)
40 34 0.7 III 1.222 (93.47) 2.156 (98.45) 1.006 (90.67) 1.768 (97.27)

The simulation results of the parameters in different schemes are reported in Table-1 to

Table-8. It is observed that average bias of a parameter decreases as the effective sample size

increases. For instance, as the value of τ increases, sample size in first stress level increases

and hence the average bias of the estimators of the parameters θ11 and θ21 decreases for fixed

n and m in a specific scheme. Also with increasing values of n and(or) m, the average bias

of the parameters decreases. On the other hand if τ increases for fixed n and m in a specific

scheme, the effective sample size in the second stress level decreases and hence the bias of

the estimators of the parameters θ12 and θ22 increases. The average MSEs of the estimators

also behave accordingly. As expected, lengths of both the exact and bootstrap confidence

intervals of the parameters decrease with increasing sample sizes. The average length of exact

confidence interval of the parameters in the first stress level viz. θ11 and θ21 are smaller than

their average length of bootstrap confidence interval. However, the opposite is true for the
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parameters in the second stress level viz. θ12 and θ22. Thus it is not evident which method

of construction of confidence intervals of the parameters works better in classical analysis.

However, in both the cases the corresponding coverage probabilities are matching quite

well with the specified confidence coefficients. In case of Bayesian analysis, it is observed

that the length of the credible intervals get improved with the increasing effective sample

sizes of the experiment. The coverage percentages match quite close to the corresponding

nominal values. Lengths of the credible intervals are smaller than the exact and bootstrap

confidence intervals of the parameters with keeping the coverage percentages as close to the

nominal percentages. It is evident that one can carry out the Bayesian analysis part with the

prior distribution used in this case. Thus as a practitioner’s point of view, if (s)he has the

prior information to use the prior distribution given in (5), it is recommended to carry out

the Bayesian analysis with the same choice of hyper parameters values mentioned before.

Otherwise, choose the frequentest analysis and choose bootstrap method since it involves

less computational cost than that of exact confidence interval construction method.

Data Analysis:

We generate an artificial data set by taking the set of parameters as, θ11 = 2.0, θ21 =

1.5, θ12 = 1.0, θ22 = 0.75. The experimental design used in generating the data is n =

40,m = 30, τ = 0.5, R1 = 5, R2 = R3 = . . . = Rm−1 = 0, Rm = 5. The data set is presented

below.
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Table 9: Simulated Data set

First Stress Level Second Stress Level
8.78e-05 0.526
1.65e-04 0.582

0.031 0.588
0.067 0.625
0.124 0.704
0.127 0.721
0.155 0.733
0.164 0.761
0.174 0.805
0.197 0.851
0.212 0.881
0.224 0.883
0.231 0.935
0.242
0.311
0.391
0.418

From the data set we see that, w1 = 11.852, w2 = 5.278, D11 = 9, D21 = 8, D12 =

6, D22 = 7. Thus maximum likelihood estimates of the parameters turned out to be as,

θ̂11 = 1.316, θ̂21 = 1.481, θ̂12 = 0.879, θ̂22 = 0.754. To construct exact confidence intervals

of the parameters, it is assumed that Pθij(θ̂ij ≤ x) is monotonically decreasing function of

θij for i, j = 1, 2 for any x. Here we take x to be maximum likelihood estimate of the

corresponding parameter. However we could not prove this monotonic property analytically.

Instead, we plot Pθij(θ̂ij ≤ x) vs θij for i, j = 1, 2 to check this property visually. These plots

are provided in Figure-1 to Figure-4.
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Figure 1: Stochastic monotonic property of θ̂11
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Figure 2: Stochastic monotonic property of θ̂21
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Figure 3: Stochastic monotonic property of θ̂12
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Figure 4: Stochastic monotonic property of θ̂22

The 95% different confidence intervals of the parameters from the simulated data set are

reported below:

Table 10: Different types of confidence intervals for simulated data in Table 9

Parameter Exact CI Bootstrap CI Symmetric CRI HPD CRI
θ11 (0.731, 2.636) (0.757, 2.952) (0.700, 2.473) (0.620, 2.245)
θ21 (0.799, 3.131) (0.818, 3.514) (0.754, 2.899) (0.652, 2.617)
θ12 (0.411, 2.587) (0.370, 2.386) (0.400, 1.918) (0.317, 1.657)
θ22 (0.371, 1.998) (0.328, 1.934) (0.368, 1.525) (0.289, 1.314)

7 Conclusion

In this chapter, we have discussed progressive Type-II censoring in presence of competing

risks under two stress levels. We have assumed one parameter exponential distribution for

each risk factor with CEM for our analysis under the two stress levels. The MLEs of the

parameters are obtained and they are conditional MLEs. We have derived exact conditional

distributions of the MLEs of the parameters which was used to construct exact confidence

intervals of the parameters. We also have carried out the Bayesian analysis and obtained

symmetric and HPD credible intervals. In simulation study, satisfactory outputs have come
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in terms of bias, MSE and coverage probabilities. It is recommended to carry out Bayesian

analysis to construct credible intervals of the parameters if prior information of the set of

the parameters are available, otherwise use bootstrap method to construct their confidence

intervals. Finally a specific simulated data set is used for illustration. It is to be commented

that although the exponential distribution is assumed as parent distribution for each factor, a

more general and widely applicable distribution like Weibull distribution can be used instead

of that. MLEs of the parameters and derivation of their exact distributions may give serious

challenges to the investigator. More work is needed along that direction.
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Appendix

Derivation of constant c

The constant c in the likelihood function 6 is such that,

m∑
d=0

m−d∑
d12=0

d∑
d11=0

(
d

d11

)(
m− d
d12

)( 1

θ11

)d11( 1

θ21

)d−d11( 1

θ12

)d12( 1

θ22

)m−d−d12 ∫
V

e
−w1
θ.1
−w2
θ.2×

m∏
i=1

dzi:m:n =
1

c
, where, V = {0 < z1:m:n < . . . < zd:m:n < τ < zd+1:m:n < . . . < zm:m:n}.

(16)

We now calculate left hand side of above equation below.

m∑
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d∑
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)(
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)d12( 1
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V

e
−w1
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−w2
θ.2×

m∏
i=1

dzi:m:n

=
m∑
d=0
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d12=0

d∑
d11=0

[(
d
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)( θ21
θ11 + θ21

)d11( θ11
θ11 + θ21
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[
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0

. . .
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e
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( 1
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)(m−d) ∫ zm:m:n

τ

. . .
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τ

e
− 1
θ.2

m∑
j=d+1

(zj:m:n−τ)(1+Rj)
×

d+1∏
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]

=
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d=0
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d∑
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)d11( θ11
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)d12
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( θ12
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[
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∑m
j=d−l+1Rj

]
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j=1

∑d−l+j
p=d−l+1(1 +Rp)

][∏d−l
j=1

∑d−l
p=j(1 +Rp)

]×
1∏m−d

j=1

∑m−d
p=j (1 +Rp)

]
(by using Lemma 1 from [7])
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=
m∑
d=0

d∑
l=0

(−1)le
− τ
θ.1

[
l+m−d+

∑m
j=d−l+1Rj

]
[∏l
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][∏d−l
j=1
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] 1∏m−d
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.

Thus the constant c turns out to be,

c =

[
m∑
d=0

d∑
l=0

(−1)le
− τ
θ.1

[
l+m−d+

∑m
j=d−l+1Rj

]
[∏l
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∑d−l+j
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j=1

∑d−l
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] 1∏m−d
j=1

∑m−d
p=j (1 +Rp)

]−1
.

Next we prove Theorem 1 and Theorem 2. To do so, we find the conditional MGFs of the

MLEs of the parameters. Here we provide the derivation of MGFs of θ̂11 and θ̂12. The

same calculations can be carried out to find the conditional MGFs of θ̂21 and θ̂22. In these

derivations, we will use Lemma 1, given by Balakrishnan et al in [7]. Before we proceed for

the derivations, we note the following conditional distribution,

for d ∈ {0, 1, . . . ,m}, i ∈ {0, 1, . . . , d}, k ∈ {0, 1, . . . ,m− d}, the conditional distribution

of (Z1:m:n, Z2:m:n, . . . , Zd:m:n, . . . , Zm:m:n), conditioning on the event (D = d,D11 = i,D12 =

k) is obtained from the likelihood function 6 and is given by,

fZ1:m:n,...,Zm:m:n|(D=d,D11=i,D12=k(z1:m:n, . . . , zm:m:n)

=
c
(
d
i

)(
m−d
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)(
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θ11
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. (17)

Derivation of E
[
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Proof of Theorem 1.

The distribution of θ̂11 is obtained by inverting its MGF. Hence the distribution function of

θ̂11 is,

Fθ̂11|D∗(x) =
c

P (D∗)

m−2∑
d=2

d−1∑
i=1

[(
d

i

)( θ21
θ11 + θ21

)i( θ11
θ11 + θ21

)d−i[
1−

( θ22
θ12 + θ22

)m−d
−

( θ12
θ12 + θ22

)m−d] 1∏m−d
j=1

∑m−d
p=j (1 +Rp)

×

d∑
l=0

[ (−1)le
− τ
θ.1

[
l+m−d+

∑m
j=d−l+1Rj

]
[∏l

j=1

∑d−l+j
p=d−l+1(1 +Rp)

][∏d−l
j=1

∑d−l
p=j(1 +Rp)

]×
FG

(
x;
τ

i

[
l +m− d+

m∑
j=d−l+1

Rj

]
, d,

i

θ.1

)]]
.



29

Similarly, the distribution function of θ̂21 is obtained from the expression of Fθ̂11|D∗(x) by

interchanging θ11 and θ21 and is given as,

Fθ̂21|D∗(x) =
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Derivation of E
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(by using Lemma 1 from [7]).

Proof of Theorem 2

The distribution function of θ̂12 is obtained by inverting its MGF and is given by,
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c

P (D∗)

m−2∑
d=2

m−d−1∑
k=1

[[
1−

( θ21
θ11 + θ21

)d
−
( θ11
θ11 + θ21

)d](m− d
k

)( θ22
θ12 + θ22

)k
×

( θ12
θ12 + θ22

)m−d−k d∑
l=0

(−1)le
− τ
θ.1

[
l+m−d+

∑m
i=d−l+1Ri

]
[∏l

j=1

∑d−l+j
p=d−l+1(1 +Rp)

][∏d−l
j=1

∑d−l
p=j(1 +Rp)

]×
1∏m−d

j=1

∑m−d
p=j (1 +Rp)

FG

(
x; 0,m− d, k

θ.2

)]
.

Similarly distribution function of θ̂22 is obtained by interchanging θ12 and θ22 and is given

by,
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Derivation of P (D∗)
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p=d−l+1(1 +Rp)

][∏d−l
j=1

∑d−l
p=j(1 +Rp)

] 1∏m−d
j=1

∑m−d
p=j (1 +Rp)

]
.
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Applications. Birkhäuser, Boston, 2000.

[6] N. Balakrishnan and A. Asgharzadeh. “Inference for the scale half logistic distribu-

tion based on progressively Type-II censoring sample”. Communications in Statistics -

Theory and Methods, 34:73–87, 2005.

[7] N. Balakrishnan, A. Childs, and B. Chandrasekar. “An efficient computational method

for moments of order statistics under progressive censoring”. Statistics & Probability

Letters, 60:359–365, 2002.

[8] N. Balakrishnan and D. Han. “Exact inference for a simple step-stress model with com-

peting risks for failure from exponential distribution under Type-II censoring”. Journal

of Statistical Planning and Inference, 138:4172–4186, 2008.

[9] N. Balakrishnan and N. Kannan. “Point and interval estimation for parameters of the

logistic distribution based on progressively Type-II censored samples”. Handbook of

Statistics, 20:431–456, 2001.

[10] N. Balakrishnan, N. Kannan, C. Lin, and H. Ng. “Point and interval estimation for

Gaussian distribution, based on progressively Type-II censored samples”. IEEE Tran-

scations on Reliability, 52:90–95, 2003.



33

[11] N. Balakrishnan, N. Kannan, C. Lin, and S. Wu. “Inference for the extreme value

distribution under progressive Type-II censoring”. Journal of Statistical Computation

and Simulation, 74:25–45, 2003.

[12] N. Balakrishnan, D. Kundu, H. Ng, and N. Kannan. “Point and interval estimation

for a simple step-stress model with Type-II censoring”. Journal of Quality Technology,

39:35–47, 2007.

[13] N. Balakrishnan and R. Sandhu. “Best linear unbiased and maximum likelihood estima-

tion for exponential distributions under general progressive Type-II censored samples”.
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risks data”. Sankhyā: The Indian Journal of Statistics, Series B, 73:276–296, 2011.

[36] S. Mao, Y. Shi, and L. Wang. “Exact inference for two exponential populations with

competing risks data”. Journal of Systems Engineering and Electronics, 25:711–720,

2014.

[37] S. Mitra, A. Ganguly, D. Samanta, and D. Kundu. “On the simple step-stress model

for two-parameter exponential distribution”. Statistical Methodology, 15:95–114, 2013.

[38] W. Nelson. “Accelerated life testing—step-stress models and data analyses”. IEEE

Transactions of Reliability, R-29:103–108, 1980.



36

[39] B. Pareek, D. Kundu, and S. Kumar. “On progressively censored competing risks data

for Weibull distributions”. Computational Statistics and Data Analysis, 53:4083–4094,

2009.

[40] E. Pena and A. Gupta. “Bayes estimation for the marshall-olkin exponential distribu-

tion”. Journal of the Royal Statistical Society. Series B, 52:379–389, 1990.

[41] N. Sedyakin. “On one physical principle in reliability theory”. Technical Cybernatics,

3:80–87, 1966.

[42] A. Tsiatis. “A nonidentifiablity aspect of the problem of competing risks”. Proceedings

of the National Academy of Sciences USA, 72:20–22, 1975.

[43] Q. Xie, N. Balakrishnan, and D. Han. “Exact inference and optimal censoring scheme

for a simple step-stress model under progressive Type-II censoring”. Advances in Math-

ematical and Statistical Modeling, pages 107–137, 2008.


