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Abstract

The growing popularity of Internet and Web 2.0 social media have led to the advent
of many e-commerce websites, discussion forums and Weblogs. These in turn have
facilitated the sharing of user provided feedback about post-purchase experience;
specifically related to various products and services. This user-generated content
comprises of opinions, appraisals, recommendations and evaluations associated with
virtually anything people care about in products or services. The opinions and post
purchase experiences shared by users through online product reviews constitute a
major part of online word-of-mouth (WOM) communication. Online WOM is
valuable to potential consumers for making product choices and purchase decisions.
At the same time, by analyzing these reviews, business organizations can gain insights
into what people are discussing about their products and services. Thus, the analysis ‘
of customer sentiments from *freely available’ online reviews can be a potentially cost
effective and time efficient solution for eliciting consumer preferences. Also, deeper
exploration of user opinions and feedback may lead to the discovery of interesting
pattern of product usage (e.g., brand experience), product weaknesses and product-

feature related opinion.

As more and more user-generated reviews are created and aggregated, a strong
demand for automatic approaches capable of extracting overall as well as specific
opinion from these unstructured texts has emerged. Sentiment analysis, often referred
to as opinion mining, is a recent area of active research. It deals with the
computational treatment of opinion and extraction of subjectivity knowledge from
online user-generated content. Thus, sentiment analysis is the task of retrieving
aggregated and fine-grained opinions related to an object or its attributes as expressed
by users in the form of free text. However, there are many problems and challenges
associated with extracting meaningful opinions articulated in unstructured user-

generated texts, like product reviews.

Based on the broad objective of mining sentiments and opinions from online reviews,

f . . i .

Our conjoint studies were conducted. As the main step, a comprehensive study of

auto i . . - . . .
matic extraction of overall and fine-grained opinions from online reviews is
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presented. This study focuses on sentiment based product review classification to




discover product-sentiment. As an output, it identifies reviewed product(s) as
recommended/not-recommended along with extraction of discussed features, feature-

level opinion mining, and opinion summarization and visualization.

Sentiment based classification of text documents is a more challenging task compared
to traditional topic based classification. Discrimination based on opinions, feelings,
and attitudes is inherently more complex than classification based on topics due to the
semantic relationships of the natural language involved. Further, extraction of the
features or attributes about which opinion has been expressed is one of the major
challenges of opinion mining. Feature-level opinion mining aims at identifying the
relevant opinions associated with specific features or attributes of a product or serviqe
from a set of reviews. However, identifying and determining the relevance of features’

and the accuracy of the expressed opinion continue to pose challenges for this task.

This research work addresses some of the critical issues related to sentiment based
classification of online reviews. Document-level sentiment analysis using supervised
machine learning techniques faces many challenges like feature selection,
dimensionality reduction, sentiment based visualization and domain dependency of
sentiments. Text sentiment classification requires deep analysis and understanding of
textual features and natural language semantics. Thérefore, a part of this work has
been devoted to the empirical comparative study of the applicability of feature
selection techniques to sentiment analysis of text documents. This study also
compares the performance of different machine learning classifiers on a benchmark
dataset for document-level sentiment analysis and explores the synergy between

feature selection techniques and various machine learning based classifiers.

Another contribution of this research to existing literature is the formulation of novel
sentiment classification models using back-propagation artificial neural network
(BPANN) and self-organizing maps (SOM). Domain independent sentiment
classification models exploit sentiment lexicons in an attempt to classify online
reviews from diverse domains. We have investigated the problems associated with
domain dependéncy through sentiment analysis on documents from two different
domains, By using large sentiment lexicons along with appropriate handling of
negation, this study has shown that encouraging results are obtainable for domain

i . )
ndependent sentiment analysis. Further, we have also demonstrated the efficacy of
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Supervised and unsupervised self-organizing map based approaches for sentiment

based classification and visualization of opinion in text documents. Finally, the study
establishes how the proposed sentiment analysis framework can be successfully

employed for deriving marketing intelligence from online product reviews.

Sentiment analysis may be as simple as overall sentiment based categorization of text
documents; but could as well be more complex and advanced procedures to extract
opinion at different granularity levels. All the document-level and feature-level
sentiment analysis approaches described in this study have been tested on a publicly
available benchmark dataset and a real-life dataset created by us. The proposed
methods have been found to yield significantly better accuracy in dealing with onlipe
subjective text compared to those previously reported. Thus, we have devised an
effective way of domain-independent opinion summarization from online customer
reviews using our unified framework for opinion retrieval, classification and

summarization at various granularity levels.

Keywords: Machine Learning, Feature Selection, Sentiment Analysis, Classification,

Opinion Mining, Performance, Experimentation.
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