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Abstract 

Music has always been an integral part of human life. Friedrich Nietzsche, the great 

philosopher rightly said, “Without music, life would be a mistake”. Music is formed by musical 

notes or sounds which have ripple patterns that repeat themselves. Music can be defined as 

sound which is made of a ripple pattern that repeats itself (Powell, p. 23). It doesn’t really 

matter what is the source of the sound, it might not always come from a musical instrument, 

but if the sound has periodicity in its wave pattern, it is termed as music (Powell, p. 23, 24). In 

our thesis, we will be handling only those musical pieces that have been released online for 

commercial purposes (e.g., Zangerle et al., 2019). 

Music has an immense impact on the physiology of the human body. Listening to music 

improves blood flow and reduces the stress-related hormones like cortisol and also reduces 

pain, ultimately creating a soothing feeling inside the listener1. However, Joanne Loewy, an 

associate professor and director of the Louis Armstrong Center for Music & Medicine 

at Mount Sinai Beth Israel in New York, says that listening to wrong music can often 

stimulate the negative emotions in our body and hence, instead of being relieved, we can tend 

to be more angry, violent, sad, or depressed and thus, “Silence can be better than random 

listening”. This dichotomy forms the basic motivation behind the thesis, like some recent 

studies (e.g., Kowald et al., 2020) and that is, what kind of music actually makes people feel 

good. 

Before a product is launched, if we can predict the popularity of the product after its launching, 

it becomes easier to predict the financial performance of the product. Similarly, in case of music 

industry, if we can predict how popular a song or a track would be before its release, it would 

 
1 https://time.com/5254381/listening-to-music-health-benefits/ 
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tell us about the commercial success of the song or track (Pachet, 2012). According to the 

recent International Federation of the Phonographic Industry (IFPI) data in 2021 the global 

revenue of music has grown by 7.4%, of which streaming revenue has grown by 18.5% whereas 

physical revenues has gone down by 4.7% and the downloads have gone down by 15.7%2. This 

indicates clearly that success rate of music is erratic as the revenues are not growing in all 

forms of commercial music and music producers are finding it difficult to predict the music 

sales (Aguiar and Waldfogel, 2018). On the other hand, the availability of online musical data 

has increased considerably over the last decade (Casey et al., 2008). These two aspects 

predominantly, form the motivation behind the study. 

The primary objective of our thesis is to add to the literature of finding the factors that impact 

music popularity. For the thesis purpose, factors that have an impact on music popularity have 

been divided into two sub-factors: internal and external. If we observe the existing literature, 

we can find that the different predictors impacting music popularity can be clubbed together 

into these two factors. Internal factors are those which are present in the music itself. In other 

words, internal factors are those which form the composition of a musical track. Furthermore, 

the internal factors can be split into low-level and high-level internal factors. Low-level internal 

factors are the primary or fundamental internal music features that build the foundation of track, 

for example, pitch, tempo, and timbre. High-level internal factors are the secondary internal 

music features which are subject to the primary features, for example, danceability, energy, or 

valence. On the other hand, external factors are the social factors which are independent of the 

composition of the musical track and yet, may have an impact on popularity. For example, e-

word-of-mouth (eWOM) about the song, or eWOM about the artist in social media, or the time 

of release of the song can be considered as the external factors. This dissertation aims to find 

 
2 https://www.ifpi.org/wp-content/uploads/2020/03/GMR2021_STATE_OF_THE_INDUSTRY.pdf 
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the probable antecedents or drivers to music popularity with both the internal and external 

aspects. The internal aspects involve the low-level and high-level internal attributes of music 

whereas the external aspects are the social networking factors in the community of the listeners. 

Our first essay is dealing with the impact of the low-level internal attributes on the popularity 

of music, which in this study, is represented by the number of listeners (Ren and Kauffman, 

2017). In this work, we examine the effects of internal music features like variation of pitch, 

number of beats and variation of timbre on the popularity of music. Using digital music data 

from the Free Music Archive we build a model to identify the importance of these 

characteristics in determining the popularity of music. Our results show that variation of pitch 

and brightness of timbre have significant contributions to the popularity of music. 

The second essay of our thesis concentrates on the impact of high-level internal music features 

on the popularity of music that can be extracted using an AI tool known as EchoNest. As we 

have already discussed, high-level features are dependent on the low-level features of music 

(Zangerle et al., 2019). Therefore, this can be argued with similar logic of the first chapter that 

the high-level internal music features also have an impact on music popularity like the low-

level internal music features. In the second essay, we also try to see the interaction effect of an 

external factor (artist familiarity) on the impact of high-level internal factors. Using digital 

music data from the same Free Music Archive as the first essay we build a model to identify 

the importance of these characteristics in determining the popularity of music. Our results show 

that danceability, energy and valence have significant contribution to the popularity of music. 

Artist familiarity also plays a significant moderating role on these contributions. 

The third essay of our thesis, is concerned about the social network effect, which is totally an 

external factor, on an individual’s decision to listen to a musical piece, which in turn, enhances 

the popularity of that piece (Dewan et al., 2017). Individuals engage themselves in social 
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communities and their consuming behaviour depends largely on the way these communities 

behave (e.g., Katz and Lazarsfeld, 1955). The impact of social network influence on consumer 

behaviour has been studied for various products (e.g., Bapna and Umyarov, 2015). The role of 

social media influence for music has been studied on the basis of popularity and proximity 

(Dewan et al., 2017). This essay concentrates on the role of social network influence for music 

on the basis of perceived credibility which is split into three dimensions: perceived expertise, 

perceived homophily, and perceived friendship. We conduct a survey on a community that is 

interested in music in a social networking site to know the respective perceived credible sources 

and then conduct our experiment on the group by allowing them to listen to different tracks 

over one month and then after recording their behaviour, test our hypotheses. Our results show 

that perceived credibility of the recommenders have an impact on music popularity and also 

give us a further scope of research on how does diffusion take place in such a social network. 

The dissertation to the best of our knowledge is one of the primitive works in the domain of 

music popularity as the literature has been found to be scanty. It has also added to the EchoNest 

literature in the form of the second and third essays. This work is also an addition to the social 

network literature and one of the few works that have been done with a social community 

relating to music. Practically, this work would be helpful for the music producers and 

composers who might be interested to know what might predict music popularity. Since music 

is used in movies as well in the form of playback and background music, we derive that the 

movie producers might be interested in this work as well. 
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6. Conclusion 

      6.1 Limitations and Future Scope 

Our thesis has got some limitations as well. Firstly, we have not considered lyrics as an 

antecedent in this study as that is a song attribute, not a music attribute but in case of songs, 

literature suggests that lyrics play a major role in song popularity. Secondly, we have not 

considered tracks that experience tempoic changes in its journey. In other words, all the tracks 

in our data have fixed tempo. Thirdly, we could not solve the mystery behind rate of listening 

and recommending tracks. The diffusion of a track and the rate of diffusion seems to be a 

complex topic and cannot be explained in the simplistic way that we have adopted for the third 

study. Hence, we aim to explore this process in our future work and study node by node to get 

a clearer picture. We have already collected a data that is quite rich in information and thus, 

hopefully, it will help us to explore more interesting facets of music popularity, a topic that is 

very little explored. 

      6.2 Conclusion 

Finally, we can conclude that music is a complex art form and how and why people like a 

musical piece is are some interesting questions to answer. In this study, we have found some 

antecedents that drive music popularity. We have empirically shown that music popularity is a 

subject of both internal and external factors. It is driven by low-level internal attributes such as 

pitch and timbre and high-level internal factors like danceability, energy, and valence. External 

factor like artist familiarity plays a moderating role in the impact of the high-level internal 

attributes on music popularity. In a community, source credibility is the external factor that 

drives music popularity both at the individualistic and community levels along with the effect 
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of high-level internal factors that play a role mostly in the individualistic level. We aim for a 

future research on the process of diffusion and rate of diffusion of music in a community. 
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8. Appendices 

      8.1 Appendix A 

Definitions of all the musical terminologies discussed in Chapter 2, Section 2.1 

Tempo: Beats per unit time in a musical track (Pampalk et al., 2003) 

Tonality: The characteristic which determines the extent to which the instrument or voice has 

hit the correct note (Chew, 2001). 

Danceability: The measure ranging from 0 to 1 that indicates how much the track stimulates 

people to dance on the basis of tempo, periodicity of beats, rhythmic stability, and strength of 

beats. The values closer to 1 indicates the track is more suitable for dance. 

Timbre and MFCC: MFCC measures the timbral aspects of music (Dhanaraj and Logan, 2005). 

Basically, it represents the spectrum which is nothing but the manifestation of the shape of our 

vocal tract. 

Melody: The characteristic of music that makes it sweet, brings ease on ears while listening, 

and involving emotions (Stefani, 1987). 
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      8.2 Appendix B 

Hello members of “*******”, 

You are requested to fill this questionnaire. This would ideally take you not more than 7-10 

minutes. This is a questionnaire about your perceptions on the other group members. Therefore, 

I respect your confidentiality. I can guarantee you that I, Sanlap Acharya, is the only one who 

can see your responses. You need not mention your name anywhere. Also, by no means, your 

responses will be disclosed anywhere (not within or outside the group).  

All the questions can have more than one answers. In fact, sufficient space is provided for you 

so that you can put any number of names, separating them by comma, that you find suitable 

for the question. There is no restriction on the number of answers you can enter for each 

question. 

This is a voluntary questionnaire. If at any point, you have any doubt, feel free to ask me that. 

If at any point, while filling the questionnaire, you feel uncomfortable, you may leave the 

survey. 

Please fill in all the questions in the questionnaire to complete the survey.  

Perceived Expertise (Feick and Higie, 1992, α = 0.86) 

1. In this group, who do you think listens to a lot of music? 

2. In this group, who do you think have good aesthetic sense about music? 

3. In this group, who do you think have immense theoretical knowledge about music?   

4. In this group, who do you think are good singers? 

5. In this group, who do you think know a lot about singers? 
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Perceived Homophily (similarity in tastes and preferences) (Feick and Higie, 1992, α = 0.9) 

1. In this group, with whom do you share similar aesthetic values and beliefs about music? 

2. In this group, who do you think share a healthy discussion about music?  

3. In this group, with whom do you have similar tastes and preferences about music? 

Perceived Friendship (Marsden and Campbell, 1994, α = 0.92) 

1. In this group, with whom are you most closely attached personally?  

2. In this group, who you want to please?  

3. In this group, who would you ask for help if you have any problem? 

4. In this group, who do you trust? 

 


