Workforce management decisions in IT services organizations: A hybrid model based approach

A Doctoral Dissertation Submitted in Partial Fulfillment of the Requirements for the Fellow Programme in Management (Industry)

Indian Institute of Management Indore

By

Selvaraj Vadivelu

Oct 2017

Thesis Advisory Committee

Prof. Shubhamoy Dey

(Chairman)

Prof. Prabin Kumar Panigrahi

Prof. U. K. Bhattacharya

(Member)

(Member)

Abstract

A services organization's profitable growth is dependent on its ability to have the right number of people with right competencies in the right location at the right time at optimal cost. Effective workforce management (WFM) decisions at strategic, tactical and operational level are critical to achieve this. Operational decisions include the matching and assignment of workforce to the project positions. Tactical planning refers to medium term decision making to determine the number, skill mix, location and experience bands of the workforce to be maintained in order to cater to the demand (project positions) in a planning horizon of a month, a quarter or a year. This includes decisions related to hiring, training and firing of workforce during a plan period. At the strategic level, human resource and business policies which guide operational & tactical planning decisions are generated, evaluated and decided.

Indian Information Technology (IT) services industry revenue was 146 billion US Dollars in the financial year 2015 with a growth of 13% year on year. With the automation challenges and protectionism in the major markets, the Indian IT services industry needs innovative WFM approaches to continue its growth story.

Given the complex decision scenarios for WFM, their short-term and long-term impact on the services organizations' ability to achieve profitable growth, good quantitative model based Decision Support Systems (DSS) are a necessity. These models range from mathematical to simulation models and each of them are best suited for addressing specific WFM decisions. There have been studies on hybrid model based approaches for decision systems to use the benefits of different types of models. It has been shown by research that integration of model based DSSs improves the decision support performance. In the case of IT services industry, while the Key Performance Indicators (KPI) are common across the industry the methods to achieve them vary from one organization to another. Hence, off-the-shelf Workforce Management Decision Support System (WFMDSS) solutions are not easily usable. The number of publications on model based approaches for WFM of IT services industry is less compared to those for manufacturing, healthcare services, container terminals and such other industries. The discussions with workforce management professionals of some of the leading IT services companies in India also indicate that model based workforce management decision support systems are not very commonly used and those used address specific WFM decision scenarios. Thus there is a need for a model based approach which addresses the three levels of WFM decisions in IT services industry. This work is an attempt to fulfil this need.

In the first part of this work, a hybrid model based approach is identified to cater to this need. In the second part of this work, the feasibility of the identified hybrid model based approach is established and the benefits of using the same is demonstrated through improvements in KPIs.

The identification of the hybrid model based approach was done through a conceptual analysis of the various models and their usage followed by a systematic literature survey based analysis of the papers addressing WFM decisions through model based approaches. Papers were identified with an appropriate search criteria and classified based on the WFM decision(s) that each of them addressed and the model based approach that they used. Through appropriate statistical tests, for each of the WFM decisions and their combinations the model based approaches used to address them were ranked. This ranking was corroborated by conceptual analysis of the model based approaches and the inputs gathered from practitioners in the IT services industry. Finally, it was concluded that a hybrid model based approach consisting of a simulation model and a mathematical programming model will address the three WFM decisions for IT services industry. Based on the decision scenarios that were considered for the three WFM decisions in this work, a Discrete Event Simulation (DES) model and a Binary Integer Linear Programming (BILP) model were chosen for the next step to establish the feasibility and demonstrate perceivable benefits.

After careful consideration of different hybrid model architectures, it was decided to use an architecture in which a simulation model is used to model the total system taking in values for a portion of the system or input parameters, from a mathematical model. Specifically a DES model is used to model the system and a BILP model is used to do optimal assignment on daily basis through the plan period.

Using established methodology a BILP model and a DES model were formulated for the IT services industry and integrated as per the chosen hybrid architecture. This was subsequently customized for a particular IT services organization. The customizations were necessitated due to the process steps and information tracked by the organization while retaining the commonly used KPIs of the IT services industry to assess the business impact. None of the customizations were due to feasibility issues.

The business impact was assessed using the KPIs used in IT services industry namely Revenue, Utilization, Average Cost to Company (ACC) and Labor Rate Multiplier (LRM). The KPIs of the actual data obtained from the organization for a financial year was computed. The developed hybrid model was used to generate plans for the same financial year with and without using the mathematical model for optimal assignment. Results from several such runs were compared through statistical tests. It was found that there were significant improvements in all four KPIs. In order to demonstrate support for strategic policy evaluation decision scenario, a retraining policy was introduced in the model and through plans generated for the same financial year the impact of training on KPIs was studied. The training was introduced into the hybrid model and executed with and without using the mathematical model for optimal assignment. Significant improvement in all KPIs was observed. On comparing the KPIs from runs with retraining to those without retraining, it was observed that retraining introduced significant gains in Utilization without any significant impact on other three KPIs.

Thus, it was shown that the hybrid model based approach was feasible and resulted in significant positive business impact. It was also shown that retraining policy results in significant improvement in Utilization.

This hybrid model based approach is a unique attempt for the IT services industry. This can be used as a reference platform for further research to explore various combinations of models and evaluate policies for IT services industry. The work can serve as a reference for IT services organizations to create their own WFMDSS. WFM products can be enhanced with this approach and enable organizations to customize as per their requirements. This work can be extended to other industries and to include more sophisticated competency matching algorithms to enhance the performance of the WFMDSS further.

Table of contents

A	bstra	ct	i
A	cknov	wledgements	\mathbf{v}
Li	st of	Figures	xiii
Li	st of	Tables	xiv
A	bbre	viations	xvi
1	Intr	oduction	1
	1.1	Business context	1
		1.1.1 Workforce management	1
	1.2	Motivation	3
		1.2.1 Information Technology (IT) services industry	4
	1.3	Research problem	5
	1.4	Research objectives	6
	1.5	Scope of this work	6
	1.6	Contributions of this work	7
	1.7	Organization of the thesis	8
2	Lite	erature Review	9
	2.1	Introduction	9

	2.2	Workf	orce management decisions	10
	2.3	Workf	orce management decision support systems	11
	2.4	Model	s used in a DSS	12
		2.4.1	Mathematical programming models	13
		2.4.2	Simulation models	13
	2.5	Model	based approaches for WFMDSS	14
	2.6	Hybrid	d model based approaches	21
	2.7	Group	ing of models and WFM decisions	22
	2.8	IT Ind	lustry specific model based approaches	24
	2.9	Resear	rch gap	27
	2.10	Resear	rch questions	27
	2.11	Summ	ary	28
3	Res	earch	Methodology	29
	3.1	Introd	uction	29
	3.2	Resear	rch methodology for RQ1	29
		3.2.1	Literature Review	30
		3.2.2	Identification of scope and search criteria	30
		3.2.3	Creation of a schema for classification of papers $\ldots \ldots \ldots$	30
		3.2.4	Search and classification of papers	31
		3.2.5	Analysis of the results	31
		3.2.6	Ranking of the model based approaches	31
		3.2.7	Identification of the model based approach \hdots	32
	3.3	Resear	rch methodology for RQ2	32
			Objective definition	33
		3.3.1		
		3.3.1 3.3.2	Formulation of HM for IT industry	33

		3.3.4	Data collection from the organization	37
		3.3.5	Hybrid model translation for an organization	38
		3.3.6	Verification of HM	38
		3.3.7	Validation of HM	39
		3.3.8	Experiment design & runs	39
		3.3.9	Analysis of results	39
	3.4	Summ	ary	40
4	Ide	ntificat	ion of the model based approach	43
	4.1	Introd	uction	43
	4.2	Litera	ture Review	44
	4.3	Identi	fication of scope and search criteria	45
	4.4	Creati	on of schema for classification of papers	46
	4.5	Search	and classification of papers	46
	4.6	Analy	sis of results	47
	4.7	Ranki	ng of the model based approaches	48
	4.8	Identi	fication of the model based approach $\ldots \ldots \ldots \ldots \ldots \ldots$	49
	4.9	Summ	ary	49
5	For	mulati	on of the hybrid model for IT services industry	58
	5.1	Introd	uction	58
	5.2	Objec ⁻	tive of HM	59
	5.3	Type	of HM & Integration	59
	5.4	Choice	e of mathematical and simulation models	61
		5.4.1	Mathematical model	61
		5.4.2	Simulation model	62
	5.5	HM fo	ormulation	62

	5.6	DES n	nodel formulation	63
		5.6.1	Objectives	63
		5.6.2	Conceptualization of the DES model	63
		5.6.3	Events & Actions	65
	5.7	BILP	model formulation	68
		5.7.1	Objective	69
		5.7.2	Process of assignment	69
		5.7.3	Supply description	69
		5.7.4	Demand description	70
		5.7.5	Assignment	71
		5.7.6	Utility	75
		5.7.7	Constraints	76
		5.7.8	Objective function	77
	5.8	Key P	erformance Indicators	77
	5.9	Summ	ary	80
6	Cus	tomiza	ation, Experimentation and Results of the Hybrid Model	83
	6.1	Introd	uction	83
	6.2	Data c	collection from organization	84
		6.2.1	Organization context & requirements	84
		6.2.2	Data for BILP model	85
		6.2.3	Organization data for DES model	87
		6.2.4	Assumptions & limitations in data	95
	6 2	Custor	mization of HM for organization	96
	0.3	Castor	0	
	$\begin{array}{c} 0.5\\ 6.4\end{array}$	HM T	ranslation	97
	6.4 6.5	HM Th Verific	ranslation	97 98

		6.5.2	Performance of the BILP on account specific datasets	99
	6.6 Experiments and analysis of results			100
		6.6.1	Tactical planning	100
		6.6.2	Strategic policy evaluation	101
		6.6.3	Strategic policy evaluation with optimal assignment	102
		6.6.4	Tactical plans generated with and without optimal assignment	103
	6.7	Summ	ary	104
7	Con	clusio	ng	110
'	Con	leiusioi		110
	7.1	Conclu	isions	111
	7.2	Contri	bution to research	111
	7.3	Manag	gerial implications	112
	7.4	Limita	tions	112
	7.5	Outloo	bk for further work	112
Re	References 1			
\mathbf{A}	Mas	ster lis	t of references	141
в	3 Information gathered from practitioners 15			151

List of Figures

1.1	Workforce movement in an organization	2
3.1	Research methodology for RQ1	41
3.2	Research methodology for RQ2	42
5.1	Block diagram of proposed HM for WFM	81
5.2	DES model state charts for WFM	82
6.1	DES model state charts of the organization	106
6.2	TDS1_TDS4: KPI Vs N (Rotation_Limit=5%)	107
6.3	TDS1_TDS4: KPI Vs Rotation Limit (N = 750)	108
6.4	OADS: KPI Vs Rotation Limit	109

List of Tables

2.1	Distinct characteristics of decisions	11
2.2	Models for workforce scheduling decisions	15
2.3	Models for workforce tactical planning decisions	16
2.4	Notes on mathematical and simulation model approaches \ldots .	19
2.5	Decision scenarios in WFM of services industry	23
2.6	Mapping of models to model based approaches	25
2.7	Models used in WFM decision scenarios of IT services industry	26
4.1	Model based approaches for WFM decision scenarios	44
4.2	Number of articles addressing decision scenarios using various approaches	47
4.3	Extent to which decision scenarios are addressed by each approach	48
4.4	Difference in percentage use of two approaches for a scenario \ldots .	50
4.5	Frequency of use of two approaches for a scenario	51
4.6	Ranking of model based approaches for addressing WFM decision sce-	
	narios based on percentage use	52
4.7	Ranking of model based approaches for addressing WFM decision sce-	
	narios based on frequency of use	52
4.8	Most commonly used model based approach for each WFM decision .	53
4.9	Discussion on WFM decisions & most commonly used model based	
	approaches	54
5.1	Events and State transitions	65

6.1	Events and state transitions for the customized model	89
6.2	Parameters, values and distributions for the customized model	91
6.3	Customized BILP model for the organization	96
6.4	DES: Comparison of Generated Plan with respect to $ACTDATA$	100
6.5	DES: KPIs of Generated Plans with and without retraining policy	101
6.6	DES: Results of Generated Plans with and without retraining policy .	101
6.7	HM: KPIs of Generated Plans with and without retraining policy $\ . \ .$	102
6.8	HM: Results of Generated Plans with and without retraining policy $% \mathcal{A}(\mathcal{A})$.	102
6.9	HM: KPIs of Generated Plans with and without optimal assignment .	103
6.10	HM: Results of Generated Plans with and without optimal assignment	103
6.11	HM: KPIs of Generated Plans (with retraining) with and without op-	
	timal assignment	104
6.12	HM: Results of Generated Plans (with retraining) with and without	
	optimal assignment	104
A.1	Master list of classified papers	141
B.1	List of practitioners spoken with	152
B.2	Findings from practitioners	153

List of Abbreviations

- **AAR:** All Account Rotation
- ACC: Average Cost to Company
- AvTIA: Average Tenure In Account
- BILP: Binary Integer Linear Programming
- BR: Bill Rate
- **CP:** Constraint Programming
- **CPI:** Cost Performance Index
- **DES:** Discrete Event Simulation
- **DP:** Dynamic Programming
- **DSS:** Decision Support System
- **GP:** Goal Programming
- **HM:** Hybrid Model
- **IP:** Integer Programming
- **IT**: Information Technology

- **KPI:** Key Performance Indicator
- LP: Linear Programming
- LRM: Labour Rate Multiplier
- LSCM: Logistics and Supply Chain Management
- MC: Monte Carlo
- MIP: Mixed Integer Programming
- **MM:** Mathematical Model
- MP: Markov Processes
- NR: No Rotation
- OA: Optimal Assignment
- OADS: Organization Account Data Set
- **OP:** Operational
- **PE:** Policy Evaluation
- QM: Queuing Model
- **QP:** Quadratic Programming
- **RL:** Rotation Limit
- \mathbf{RQ} : Research Question
- **SAR:** Specific Account Rotation
- **SD:** System Dynamics

- **SM:** Simulation Model
- **SME:** Small and Medium Enterprises
- **SPI:** Schedule Performance Index
- **ST:** Strategic
- **TDS:** Test Data Set
- **TP:** Tactical Planning
- **TRE:** Total Relevant Experience
- WFM: Work Force Management
- WFMDSS: Workforce Management Decision Support System